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THE STATISTICAL PROPERTIES OF ECHOES
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(flat-mirror surface) to incoherence (surface of high relief, to which geometrical optics is applicable).
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For fixed source-receiver height the average echo wavefunction, and the average echo power, are calculated
as functions of delay time, and the echo autocorrelation function is calculated as a function of the separation
of two source-receiver points at fixed delay time. The duration of the echo is calculated, and the long-wave
limit, the smooth-surface limit, the Fraunhofer limit, the continuous wave limit and the geometrical-optics
limit are examined. A method is suggested for inferring the statistics of the surface from measurements
of the average echo power. The theory of random noise is applied to the fluctuations about the calculated
averages which occur as the source-receiver is moved horizontally. These fluctuations constitute ‘spatial
fading’, and we calculate several measures of the spatial fading rate for the echo wavefunction and the
time-smoothed echo power, as well as a measure of the degree of spatial periodicity of the fading. Finally,
an estimate is made of the smallest detectable horizontal displacement of the source-receiver relative to
the rough surface.

Symbol,
a(z)
a(w)
¢
Gy(R)
Cz(R)
C,(R)

Co(R)

Cé(R): Czﬁ(T: R)
C;ﬁczﬁc‘:(R)

E

E(K,7)

&(¢,7)

S(R)

fl
F(1)
Fo(t)
Flw)

= N N xS

f

N(<E), Ni(r)
N, (pv), Nx(r)
P{(f)

P{(k)

Pf(fufo Ro— Ry)

Pi(ky, ko, R)
Pé(gh g23 R)
Pg(pb P2s R)

q
Q(7)
Q(wb ‘02: T)

Qz(7)

LisT OF PRINCIPAL SYMBOLS

meaning and equation, etc., where introduced
pulse envelope function (2.2)
(2.3)
speed of waves
autocorrelation function of surface height (3.11)
autocorrelation function of surface reflectivity (3.31)
autocorrelation function of echo amplitude (4.28)
autocorrelation function of smoothed echo power (4.22)
autocorrelation function of echo wavefunction (4.1)
autocorrelation function of complex echo wavefunction (4.20)
total energy in the echo (6.4)
‘spatial power spectrum’ of echo (7.20)
‘modified spatial power spectrum’ of echo (7.24)
height of rough surface above point R on the reference plane
surface slope (3.15)
time dependence of pulse (2.1)
time dependence of complex pulse (2.3)
Fourier transform of F(¢) (2.2)
height of source-receiver above reference plane
wave vector of plane wave component of echo (7.20)
horizontal extent of typical surface irregularity
spatial rate of change of p at a particular place + r.m.s. rate of change of p (7.40)
linear density of surface zero-crossings (3.14)
linear density of crossings of mean level by wavefunction (4.9), (7.1)
linear density of crossings of a given amplitude level (4.36), (4.40)
one-position surface probability distribution (3.1)
(3.3)
two-position surface probability distribution (3.6)
(3.8)
two-position echo probability distribution (4.4)
two-position amplitude probability distribution (4.24)
wave-number of plane wave component of echo (7.24)
(5.35), (5.36)
(5.15), (5.16)
(5.31), (5.32)
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r distance from source
R two-dimensional position vector in reference plane, separation of two
source-receiver positions
R, horizontal position vector of source-receiver
R(7) radius of annulus on surface returning radiation at 7 (2.15)
Rox(7) source-receiver separation beyond which no spatial correlation exists be-

tween echoes (7.32)

S r.m.s. surface height above reference plane

¢ time measured from emission of pulse centre from source

T echo half-length (§6 (iii))

T, half-length of echo variance (§6 (iii))

T smoothing time (§2 (ii))

Z,Z(R) amplitude reflectivity of rough surface at R

o undulating surface (§3 (i)

yig surface of steps (§3 (ii))

v flat surface of varying reflectivity (§3 (iii))

0 coherence parameter (5.33), (5.34)

AR(r) width of annulus on surface returning radiation at 7 (2.16)

|AR| min smallest detectable horizontal displacement of source-receiver (7.43)

|ARg|, mean distance between zeros of echo wavefunction (7.14)

AG(T) (2.18), figure 2

Ap smallest detectable change in echo amplitude level (§7 (ii))

Aw pulse band width (2.22)

e(7) parameter specifying spectral purity of spatial fading (7.19)

7 imaginary part of complex echo wavefunction (4.3)

0(7) semi-angle of cone returning radiation at 7 (2.17)

Onax semi-angle of cone containing most of the radiation returned to the source
(§2 (i)

A carrier wavelength of pulse

& echo wave function (4.3)

H(f") probability distribution of surface slopes (3.15)

II(p,p") joint probability distribution of p and spatial rate of change of p (4.34)

P echo amplitude (4.3)

o spatial pulse length

2, X, 2(7) echo variance (4.7), (4.18a)

T delay time (2.11)

T’ dummy delay time variable (5.13 ff.) labelling rings within the contributing
annulus of figure 2

7(7) modified delay time (7.2), (7.3) figure 6

@(r,t) outgoing wave from source (2.1)

X phase of complex echo wavefunction (4.3)

(7, Ry) echo wavefunction (§2 (i))

Ve, Ry) complex echo wavefunction (§2 (ii))

V0, Ry) §2 (i)

N carrier angular frequency of pulse

49-2
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1. INTRODUCTION

It is very difficult to calculate all the details of the echo received back at the source when a pulse
of radiation is reflected from a rough surface; it is even more difficult, in principle as well as in
practice, to infer the detailed topography of the surface from measurements on the echo (Berry
1972). Fortunately, the interpretation of the data obtained by practical methods of echo sounding
does not generally require these two problems to be solved completely. Consider, for example,
the pulsed radar experiments described by Robin, Evans & Bailey (1969), whose aim is to
ascertain the subglacial topography of polar regions. In order to determine the gross features of
the ice/rock interface — the ‘geography’ — it is necessary merely to note how the time of the
“first return’ of the echo varies as the source-receiver point is moved in a plane above the surface.}
Of course, the fine detail in the interface — its ‘roughness’ — also affects the echo, which may
differ considerably from the original pulse both in its duration and its detailed structure. A
detailed knowledge of the roughness and of the echo is not usually required, however; statistical
information is sufficient. For instance, instead of seeking the location and dimensions of every
boulder near the rock surface, we may be content to know approximately how many boulders
in a given size range lie on unit area of the surface. Or, instead of asking precisely how the echo
strength at a given delay time will ‘fade’ when the source-receiver is moved from one particular
point above the surface to another, we may wish to know only the average rate of change of the
echo strength (this is what determines the ultimate sensitivity of the technique of ice velocity
measurement proposed by Nye, Kyte & Threlfall (19724) and pioneered by Walford (1972)).

In this paper we set up a framework within which such statistical questions can be answered.
We introduce an ensemble of statistically stationary surfaces whose roughness resembles that of
the actual rough surface, and use this ensemble to calculate the average values of a variety of
quantities associated with the echo. We believe these averages to correspond to ‘local averages’
computed from measurements of the echo for a large number of source-receiver positions, all of
which lie above a given ‘neighbourhood’ of the actual rough surface. This is necessary, because
otherwise we would be averaging not only over the ‘roughness’ but also over the mountains
and valleys corresponding to ‘geography’. But it will be the exception, rather than the rule, that
roughness and geography can be clearly separated, because naturally occurring surfaces may
vary on all scales (Nye 1970, p. 385), and care must be taken in defining the size of the neigh-
bourhoods involved in the averaging. A proper theory of this ‘partial averaging’ is not available,
but it is clear that the neighbourhoods must be at least as large as the area of the surface which
is explored by the pulse from a single source-receiver position P; this is the surface lying within
a cone with apex P, whose axis is perpendicular to the mean surface and whose semi-angle is
typically about 10° (see § 6 (iii)). (Most of the previous work on reflexion from rough surfaces has
been concerned with incident plane waves of infinite extent (Beckmann & Spizzichino 1963), or
with statistically homogeneous surfaces (Booker, Ratcliffe & Shinn 1950), so that this problem
of neighbourhoods has not arisen.)

The rough surface is specified by its height f(R) (figure 1) above a ‘reference plane’, which
we shall refer to as ‘horizontal’. It is convenient to define this plane as the mean surface over the
neighbourhood explored by the experiment; the two-dimensional vector R locates a point in
the plane. The scale of the roughness is characterized by the local r.m.s. surface height § and

+ The ‘deconvolution’ of these first returns is not quite straightforward (Harrison 19770; J. F. Nye unpublished;
Ozorio unpublished), particularly if there is a series of reflecting layers within the ice.
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the horizontal extent L of a typical irregularity. The source-receiver P (whose polar diagram is
assumed isotropic) is at a height /4 vertically above the position R, on the reference plane. The
pulse sent out from P is specified by its time-dependence F(¢) (defined in §2 (i)), and travels to
and from the surface with the constant speed ¢ (in the polar experiments of Robin et al. (1969),
¢ is the speed of radar waves in glacier ice). It is common for echo-sounding experiments to
employ quasimonochromatic pulses, which are characterized by a carrier wavelength A and a
spatial pulse-length o thus F(¢) has a duration o/¢, and a predominant angular frequency o,
given by 2mc/A.

i

Kl Dt

R P
~¢——'neighbourhood’of P >

reference plane

Ficure 1. Basic geometry of system, and schematic definition of important length parameters.

We shall analyse the dependence of the various properties of the echo received back at P on
the five length parameters %, A, o, § and L. The relative influence of these parameters is different
in different parts of the echo, i.e. for different values of the time delay 7 (defined in §2 (i)). In
addition, two qualitatively different types of rough surface with the same values of $ and L
(described in §3) may give rise to very different echoes (§6). The irregular ‘fading” of the echo
as R, is varied depends in principle on all five parameters, but we shall find in §7 that some
aspects of this fading (e.g. the average fading wavelength) are surprisingly independent of S
and L (i.e. of the form of the surface).

In our treatment the five parameters will be arbitrary, apart from the following four restric-
tions:

(a) Because of the quasi-monochromatic nature of the pulse, we require

ALo (1.1)

(in Antarctic echo-sounding, A/o" ~ 0.1).
(b) Kirchhoff diffraction theory will be employed throughout (see §2 (i) and Berry 1972);
this neglects shadowing of one part of the surface by another (as seen from P), which will be a

reasonable approximation if
S < L. (1.2)

This is the most severe of the four restrictions; if it is violated, we are dealing either with a ‘bed-
of nails’ surface or a surface covered with potholes.
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616 M. V. BERRY

(¢) For Kirchhoff theory to be valid, P must not lie in the ‘near zone’ of the surface, i.e.
ALh (1.3)

(in Antarctic echo-sounding, A/A is typically about 0.005).
(d) Considerable simplification in the mathematics (§2 (i)) is produced by requiring that

S <h. (1.4)

Violation of this condition might be produced by a high cliff in the ‘neighbourhood’ of P,
which would be described as ‘geography’ rather than ‘roughness’; the effects of any small-
scale roughness near such a cliff cannot be described by the methods of this paper.

These restrictions (which are often satisfied in practical echo-sounding) leave a great deal of
freedom in the possible values of 4, A, o, § and L, corresponding to a great variety of echo be-
haviour (see, for example, §§6 (ii)—6 (viii)). Perhaps the most important of these ‘degrees of
freedom’ is the fact that o may be finite, although restricted by (1.1); thus we shall be able to
describe fading in the ‘tail” of the echo, which depends essentially bo# on the pulse being of finite
duration and on the interference behaviour resulting from quasi-monochromaticity (§7 (i)).

The paper is arranged as follows: In §2 (i) the wave theory underlying our treatment is pre-
sented; this is a simple modification of Kirchhofl’s theory, which we call the ‘Fresnel approxi-
mation’. It is a common experimental practice to record not the echo wavefunction but the
power, or the rectified wavefunction, smoothed over at least one carrier wave period; the analy-
tical description of this smoothing is dealt with in § 2 (ii). In §3 the statistics of rough surfaces are
introduced, and probability distributions, correlation functions, etc., are defined for three
different types of surface. In §4 the important concept of cokerence of the echo is introduced, and
the statistical distributions associated with the echo are discussed. It is shown that under most
circumstances the theory of Gaussian noise may be applied; this means that in order to describe
the echo statistics completely it is necessary to calculate only: (i) the average echo wavefunction,
(ii) the average echo power (i.e. square of wavefunction), and (iii) the autocorrelation function
of the echo wavefunction at a given time delay 7 as a function of the separation R of two source-
receiver points. These three ensemble averages are calculated in §5 for the three types of rough
surface introduced in §3. The formulae for the mean echo power are examined in detail in §6,
in order to calculate the duration of the echo, and to describe the nature of the echo in a number
of important limiting cases. We also (§6 (ix)) suggest a systematic way of inferring the nature
of the surface from the average power. In § 7 the statistics of the pattern of spatial fading observed
when the source-receiver position R, varies is examined with the aid of the echo autocorrelation
function calculated in §5. The quasi-periodicity of the fading, whose ‘wavelength’ and spectral
purity depend on the delay time 7, is discussed in § 7(i), and in § 7 (ii) these results and the results
of §6 are combined to yield a criterion for the ultimate sensitivity likely to be obtained by
techniques which employ the spatial fading pattern for precise position location {Walford 1972).

It is hoped that a number of the formulae derived in this paper will prove useful to workers
engaged in practical echo-sounding. In order to assist readers who have no interest in wading
through the considerable analytical detail involved in deriving these formulae, they are gathered
together at the beginning of § 8.

There is an enormous literature on scattering from rough surfaces (see the treatise and biblio-
graphy by Beckmann & Spizzichino 1963). Our reason for adding to it is that a comprehensive
theory for the diffraction of a pulse does not seem to have been published; most previous work is
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confined to monochromatic waves, and can never explain the time-dependence and spatia
fading of the echo tail (i.e. the late returns, for which 7 > o//2¢). In addition, conventional radar
systems do not employ the very wide-angle (essentially isotropic) beams considered by us, which
are used in the glaciological experiments of Robin ¢t al. (1969), for which a laboratory simulation
has been constructed (Nye et al. 19724a) involving ultrasonic pulses reflected from metal foil,
and for which extensive computer simulations as well as a theory based on ‘filter functions’
have been devised by Harrison (1972). Inevitably, many of our results will have appeared before
in various guises (particularly in the monumental works on random noise by Rice (1944, 1945),
and the analysis of random surfaces (e.g. sea waves) by Longuet-Higgins (1956)); we consider
that this repetition is worthwhile in the interests of clarity.

2. DIFFRACTION THEORY

Neglecting polarization effects, we write the scalar wavefunction of the pulse emitted by the
source as

B(rt) = F(L;(Z—/C—D, (2.1)

where r represents distance from the source-receiver, which is assumed to radiate and receive
isotropically (this is not true in practice, but we shall presently see that this is not likely to give
rise to serious error); the wavefunction is defined to make ¢? have the dimensions of power.
The time-dependence of the source is specified by the quasi-monochromatic function F(f). We
write this in the alternative forms

E(t) = a(t) coswyt = fw dw F() exp{—iot} = Re F(t), (2.2)

where a(?) is the pulse envelope of approximate duration o/, , is the angular frequency of the
carrier wave, a bar above a function denotes Fourier transformation with respect to the argu-
ment, and F¢(¢) is a complex source function, defined by

Fo(t) = a(t) exp {—iwyt} = ° dwd(w —w,) exp{—iw,}. (2.3)

As a simple model useful for analytical purposes, we may take the Gaussian pulse envelope
a(t) = Aexp{—c?fd%}, (2.4)

where o/c is twice the r.m.s. pulse duration for the power envelope, defined by

o= 20( " diea(t) / ? dtaz(t))’}. (2.5)

— 00 — 00

2(i). The Fresnel approximation

According to Kirchhoff diffraction theory, the echo wavefunction (¢, R,) received back at
the source at R, at time ¢ is given by an integral over the rough surface, each point of which acts
as a ‘secondary source’ for the reflexion of the incident wave ¢(r, ).

It was shown by Berry (1972) that this integral may be transformed into an integral over
points R in the reference plane (figure 1). When we introduce a position-dependent amplitude
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618 M. V. BERRY

reflectivity Z(R) to allow for the fact that the surface may not be a perfect mirror (which would
correspond to Z = 1), the expression for the echo wavefunction is

R ZR) F'[1— (2 J{(h—f(R))*+ (R— Ry)%]
v Ry) = nff R TRV —F R+ (R-RyY - (2:6)

The prime denotes differentiation of F by its argument.

Because of the way f(R) appears in this formula, it is intractable for the purpose of taking
ensemble averages. In this paper we shall adopt a simplification of (2.6) — the ‘Fresnel approxi-
mation’ — which consists in writing the square root in the numerator as

H(E—=f(R))*+ (R~ Ry)%} mh—f(R)+(R—Ry)*/2h, (2.7)
and replacing the denominator in the integrand by /4% There are really two assumptions here;
first, we are requiring that F(R) < h (2.8)

for all surface points R which contribute significantly to the integral. This is equivalent to the
approximation (1.4) already discussed. The second and principal assumption underlying (2.7)
is a restriction on the semi-angle Omax of the cone within which radiation is returned to the
source P (figure 2). The angle 6 corresponding to a given point R on the surface is defined by

tan® = |R — Ry|/h. (2.9)
By simply expanding the square root, it is easily seen that the approximation (2.7) is valid if
(tan Omax)?* < 8, (2.10)

i.e. provided Omax does not exceed about 45°. This is not a severe restriction in practice, because
the cones of illuminating radiation from radar aerials, etc., are often not much wider than this.
Even from a theoretical standpoint there will often be no objection to using (2.7); first, because
it is not expected that radiation will normally come back from large angles, as we shall see in
§6 (iii), and secondly, because the whole Kirchhoff approach must break down at very large
angles owing to the inevitable shadowing which will then occur for all except perfectly flat
surfaces. It is natural to measure time delay in the echo not from the instant ¢ = 0 when the
centre of the original pulse is emitted (cf. (2.4)), but from the instant ¢ = 2//c when the centre
of the pulse would be received at P after reflexion from the reference plane. Therefore we define
the echo time delay 7= t—2hc. (2.11)

If (2.7) and (2.11) are incorporated into (2.6), we obtain the Fresnel approximation for the
echo wavefunction (7, R,):

(1, Ry) = — 5= /z2f dRZ(R) F (+2f§R>—(R_chR°>2). (2.12)

A simple test of this expression can be carried out for a flat mirror surface (f = 0, Z = 1); evaluat-
ing the integral gives W(r,R,) = —F(r)[2h, (2.13)

which is precisely the result expected, describing the reflexion (with sign reversal) of the wave
(2.1) from an image 24 below P.
The conditions (1.1 to 1.4) do not imply that

o <h. (2.14)
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This restriction was not made, because we wish to be able to take the monochromatic limit
o - 00, which corresponds to continuous-wave illumination of the surface. Nevertheless, (2.14)
is often satisfied in practical echo-sounding, and it is easy to see that in this case the radiation
received at delay time 7 has come mainly from an annulus on the surface (figure 2) which is
exactly circular in view of (2.8). The radius R(7) of this annulus and its width AR(7) are given by

70
R(7) = (chr + Le?12)i— (chr)} (2.15)

and AR(r) = Lﬁ%f;" e (Z}if)% (2.16)

P

A6(T)
6(r)

—~< —%—c'r

Y =7
TR

AR(T)
Ficure 2. Annulus and cone of illuminating radiation contributing to echo received at time delay 7.

The annulus is contained within two cones whose semi-angles are 6(7) and 6(r) + A0(7), where

4h sin? (30(1)) ™0 hO*(7)
T = —
¢ cost(r) ¢

(2.17)

_ocos?O(r) 0 o
"~ 2hsinO(7) 2(her)t’

and A0(r) (2.18)
The limiting values in (2.15) to (2.18) provide good approximations if  does not exceed Omax
given by (2.10).

It should not be supposed that the circles in figure 2 correspond to ‘Fresnel zones’ on the
surface; these are generally highly convoluted (and possibly multiply-connected) lines lying
mostly within the annulus (see Berry 1972). The detailed structure of particular Fresnel zones
does not affect the statistical quantities with which this work is concerned.

2 (ii). Smoothing the echo power

The echo (7, R,) is a quasimonochromatic function of 7; this follows from the basic diffraction
formula (2.12), given the nature of the original pulse F(¢) (equation (2.2)). It is a common
experimental practice to eliminate the carrier-frequency oscillations by electronically smoothing
the echo power ¥%(7, R,) over a time T comparable with the carrier-wave period

Ae (= 2m[w,).

50 Vol. 273. A.
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620 M. V. BERRY

We shall show that the smoothed echo power (¥2(7, Ry)sm s given to a very close approximation

by (27, R = M1l R, (2.19)
where e(7, R,) is the complex echo wavefunction resulting from the diffraction of the complex
source function F¢(¢), defined by (2.3).

It is convenient to employ Gaussian smoothing, so that

(200, R))ow = Gy | AWR(E R exp (= (=723, (2:20)

- f_ooao dwlj_oooo de%(wl’ RO) %(wm Ro)
x exp { —i(w; + w,) T}exp { — $(w; + 0,) 2 TE}, (2.21)

where we have evaluated the integral over 7" after writing ¥ in terms of its Fourier transform.
Now ¥ (w, R,) cannot contain Fourier components not present in F(w); thus (cf. (2.2) and (2.3))

¥ (0, Ry) is zero for all w except for two narrow bands near w = w, and © = —w,, the band-
width Aw being given by the ‘uncertainty relation’
Aw ~ ¢fo. (2.22)
These two bands can be separated by writing
V() = 3(Fe(0) +TE(— ). (2.23)
The terms Yre(0;) Ye(w,) and ¥ (— w,) ¥ (—w,) contribute to (2.21) with a weighting
exp{— (0, +w,)?T2[2} ~ exp{— 20} T2} ~ exp{—8n?, (2.24)
which is negligible, while the cross-terms ¥r¢(w;) ¥ ( — w,) and ¥¥ (— w,) ¥e(w,) are weighted by
exp { ~ b0, +03)° T2} 3 exp{—3(A0)*T2 ~ exp{—120%), (2.25)

which may be replaced by unity because of the quasi-monochromaticity condition (1.1). Thus
(2.21) becomes

(¥2(7, Ry))sm = ij‘_w dw1f_w dwy exp { —i(0y +0y) T} [Fe(wy) Y& (— wp) + Y& (— w1) Ye(wp)],
(2.26)
from which (2.19) follows immediately.

Since it is generally the smoothed echo whose ‘fading’ is followed as R, is varied, much of
the rest of this paper will be concerned with the statistics of |1/¢(7, Ry)|, which we shall hence-
forth call the echo amplitude, and the smoothed power % |¢r¢(7, R,)|% Since the amplitude is
important from a theoretical point of view, we point out that as well as being given approxi-
mately by (2.19), it may be observed very simply as the envelope of the curves of (7, R,) against 7
which are obtained by varying the phase of the carrier wave exp { —iw,}.

3. STATISTICAL DESCRIPTION OF ROUGH SURFACES
In order to calculate ensemble averages of the echo wavefunction (7, R;) given by (2.12), it
is necessary to discuss the probability distributions of f(R) and Z(R). We deal first with f(R),
leaving Z(R) till §3(iii); our treatment is based on that given by Beckmann & Spizzichino
(1963, p. 185). The one-position distribution, P{(f), is defined by

P{(f) df = probability that at a point R in the ‘neighbourhood’ beneath
the source-receiver the surface height lies between fand f+ df. (3.1)
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STATISTICAL PROPERTIES OF ECHOES 621

With the aid of P{(f) it is possible to take the ensemble average {g(f)) of any function g(f(R))
of the surface height at a single place R; the average is given by

@ =" arines). (32)
We shall require the Fourier transform
Pl = Cexpitfy = [~ dfesp (AP, (3.3)

Asimple parameter of the surface which can be derived from PJ(f) is the r.m.s. height S, defined by

s=(m =" arre). (3.4

As a model, we shall often take the Gaussian distribution

PI() = Gz /12, (3.5)

for which the mean height {f) is zero as required by our definition of the reference plane.

The function P{(f) does not specify the surface sufficiently for our purposes, because in cal-
culating {¥%(7, R,)) it will be necessary to take averages over functions G(f(R,),f(R,)) of the
surface at two different places R, and R,. We therefore require the two-position distribution
Pi(fi, fo» Ro—R,), defined by

Pi(fi,.f> Ry— R;) df;df, = probability that height at R, lies between f; and
fi+df;andheightat R, lies between f, and f, + df,. (3.6)

In this paper we shall confine ourselves to statistically isotropic surfaces, where only the modulus
|R,— R,| = |R| appears in P§. The average value of a function of two positions is

GURLSRY = [ af[” ahPUS fo Re= R G ). (3.1

The Fourier transform of PJ is

Plllss b R) = Cexp ik (R) = f R = [ dfi[* dfsexplilhifi= ko o} PUinfu B)-

(3.8)
The distribution P{(f) can be regained from Pj(f,, f5, R) by the relations

PY = 7 ahbl s R = oo [ dkesp (kAL Pk 0, R). (3.9)

Information about the correlations between different points on the surface is provided by the
dependence of P§(f1, f5, R) on R. It is easy to see that the complete correlation which must exist
for non-pathological surfaces when |R| = 0 (i.e. R; = R,), together with the complete lack of
correlation when |R| — oo, requires the limiting behaviour

?}, P{ (/) 0(/i=1)

P{ (f fo» R) (3.10)

/«g/\;

50-2
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622 M. V. BERRY

The autocorrelation function of the surface, C;(R) is defined by

Cf(R) = <f( ){}2; + R)>’ (3.11)

where we have taken account of the fact that { f) is zero, and where

SRS RAR)Y = [* AL [ RSP foB) = lim =T Pl o R). (2.12)

(o i) Oy OFp 2
This definition ensures that the limiting behaviour of C;(R) is

Q
s
(R)
/N
/e * 0

Given the function P{(f;, f3, R), a measure of the horizontal scale of the irregularities can be
calculated; this is Ny, the average number of times the surface crosses unit length of a straight
line in the reference plane, i.e. the linear density of zero-crossings. Consider the infinitesimal line-
segment joining points R; and R; +dR, in the reference plane. The surface will cut this line if
S(R,) is negative and f(R, +dR,) is positive, or if f(R,) is positive and f(R; +dR,) is negative;
the probability of this is

(3.13)

2" [ anPis SR,

so that the mean number of crossings in unit length, i.e. N, is

N, = lim Idef dflf dfPL( S fo R). (3.14)

dR—0

Finally, the distribution of slopes, II(f'), defined as

II(f")df" = probability that the surface gradient at a given point lies
between f” and f’ +df’ (3.15)

is given in terms of P{(f;, f», R) by

1(f) = lim R f " APULSERSR),
- (3.16)
= }Jn})R ok exp {ikRf"} Pi(k, k, R).

The machinery has now been developed to enable the three rough surfaces to be defined, for
which we shall later calculate average properties of the echo. The first two surfaces have identical
P{(f) functions, but different P(f;, f;, R) functions leading to very different slope distributions
II(f"), so that the surfaces differ qualitatively.

3(i). Undulating surface (denoted by o)

This is the ‘ Gaussian rough surface’ most frequently employed in theoretical discussions (see,
for example, Beckmann & Spizzichino 1963, p. 190; Longuet-Higgins 1956). P5( f1, fo, R) is

defined as 1 [f3+/3—2f1/2Cs(R)] }, (3.17)

Pi(fi, fo R) = =S 1—CE (Rt exp{“ 252(1—C3(R))
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STATISTICAL PROPERTIES OF ECHOES 623

a function whose Fourier transform is
Pi(ky, ks, R) = exp{~3S°[B+ B — 2.k, G, (R) (3.18)

It is readily verified that this probability distribution satisfies the conditions (3.9) to (3.12),
thus representing a possible surface, and that § is the r.m.s. height. For the density of zero-

crossings N, (3.14) gives 1
D A (3.19)

a result also derived by Rice (1945, p. 51) using a different method. It is convenient (although
not necessary) to take the model

C(R) = exp{—RYL?), (3.20)
2t 0.450 .
so that Nf=;t—L=T, (3.21)

corresponding to a diameter of about 4L for a typical irregularity. For the slope distribution
II(f"), (3.16) gives L
I f" = %P {—L2f'?[452}, (3.22)

which is also Gaussian, the r.m.s. slope being 23S/L.
When reflexion from this surface has been studied before (Beckmann & Spizzichino 1963,
pp- 801L.), considerable analytical difficulties have been encountered because of the ‘ exponential
of an exponential’ which appears in (3.18) if the model (3.20) is used. We avoid these problems
by the substitution
exp [$%k, £y exp { — R2[L2}] - (exp {S%k, £y} — 1) exp { - A5y Ky
P —exp{— ST k)

}+ 1, (3.23)

which has been chosen because it has the correct limiting forms near R = 0 and at R = o0, and
the correct analytical form for all R when |§2,k,| is small. The substitution is tantamount to
replacing Py(fy, fo R) (equation (3.17)) by a different surface probability function, which,
although it cannot easily be evaluated in closed form, can nevertheless be shown to have the
remarkable property of being identical to (8.17) so far as the quantities P{(f) (equation (3.5)),
C;(R) (equation (3.20)), II(f’) (equation (3.22)) and N; (equation (3.21)) are concerned.

3 (ii). Surface of steps (denoted by [3)

This has perhaps the simplest two-position probability distribution compatible with (3.9) to

(3.12), namely
Pi(fi, fo R) = P{(f1) 8(fr—12) Cx(R) + P{(£) P{(fo) [1 - G;(R)], (3.24)

whose Fourier transform is

Pl(ky, by, R) = exp{—§S*(ky — £,)*} C;(R) +exp{— $S2(K + &)} [1 - C;(R)]  (3.25)
(the model (3.5) has been used). The nature of this surface is best seen by evaluating I7(f");
(3:10) gives 1) = 8(f) (3.26)

so that here, in contrast to the undulating surface, the slope is always zero except possibly at a
set of points with measure zero. The surface therefore consists of flat regions separated by vertical
walls whose r.m.s. height is 25. The density of zero-crossings given by (3.14) is

N, = —1C}0). (3.27)
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624 M. V. BERRY

This means that the model (3.20) cannot be used, and it is not hard to convince oneself (e.g. by
considering a one-dimensional function consisting of a series of rectangular hills) that Cy(R)
must have a finite slope at the origin for this type of surface. Therefore we employ the model

CH(R) = exp{~ RIL}, (3.28)
so that Ny =1/2L, (3.29)

which again corresponds to a diameter of about 4L for a typical irregularity.

3 (iii). Flat surface of varying reflectivity (denoted by 7)

Since f(R) is zero, the surface is specified by the statistics of Z(R). This function, which is
always less than unity, appears only linearly in the basic diffraction integral (2.12), and hence
quadratically in the echo power ¥%(7, R,). Thus the full probability distributions of Z(R) are
not required; the only relevant quantities are the mean value (Z) and mean square value {Z*),

hich satisf
which satisfy @< @D, (5.30)

and the reflectivity autocorrelation function C,(R) defined by

_<Z(Ry) Z(R, +R)) —<Z)*
B (¥ —Zy

for which we may use either of the models (3.20) and (3.28).

In the polar ice radar experiments (Robin ef al. 1969), the surface « of §3 (i) might correspond
to an undulating rock glacier bed, or to rugged floating sea ice, the surface £ of §3 (ii) might
correspond to the ice/water interface between flat ice floes, while the surface y of §3 (iii) might
refer to a flat glacier bed made up of various rock types.

Cz(R) (3.31)

4. STATISTICS OF THE ECHO
4 (i). The distribution of the echo wavefunction

With the aid of the surface probability distributions of §3, and the diffraction theory of §2,
we shall be able to calculate the ensemble averages of (7, R,) and ¥*(7, R,), and the auto-
correlation function of the echo wavefunction at two source-receiver positions separated by R,

defined by
_ ((r, R Pr(r, Ryt R)) — (7, Ry))*
Colm R) = == Ry — o (7 Ry (4.1)

(this quantity is independent of R,). The results, which will be derived in §5, are essentially
exact under the restrictions (1.1) to (1.4). But it is not possible to calculate directly the mean
values of other quantities, such as the amplitude |¢¢(7, Ry)| (whose significance in terms of
smoothing was explained in §2 (ii)), or the autocorrelation function of ¥2 rather than ; this is
because such direct calculations would not only be impossibly complicated, but would involve
the unknown many-position probability distributions of the surface height as well as P{(f) and
Pi(f1 fo» R) (cf. Mercier (1962) who treats a relatively simple case where the surface is Gaussian
and the waves monochromatic).

In alarge class of cases, however, this difficulty does not arise, because the complete probability
distribution of (7, R,) (considered as a random function of R, for fixed 7) is known, from which
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STATISTICAL PROPERTIES OF ECHOES 625

the ensemble average of any quantity associated with the echo can be calculated. This situation
arises whenever the annulus (figure 2) containing surface points which contribute to the echo
at a given delay time contains a large number of irregularities, i.e. (equations (2.15), (2.16)),

whenever
2nR(7) AR(1) who
Then ¥ is the sum of a large number of independent random contributions, so that according to
the central limit theorem of probability theory its distribution must be Gaussian, whatever the
statistical nature of the underlying rough surface. (One case where (4.2) is obviously violated
is that of a surface which varies so gently that it may be considered as a flat plane in the ‘neigh-
bourhoods’ seen by each source position R,.)
Let us introduce the real random variables £, 9, p, ¥ by the definitions

Ye(r, Ry) = pelx = £+iy, (4.3)

so that £ and p are new names for the echo wavefunction and amplitude respectively. According
to the central limit theorem, the two-position probability distribution of £ is

P§(&,, &, R) = (probability that the echo wavefunction at any source-receiver point R,
lies between &, and &, + d&,, and the wavefunction at the source-receiver

point Ry+ R lies between &, and &, +d§,) + (d&,d&,), (4.4)
exp {(51 — )%+ (£a—<€))* — 2Ci(R) (£, —<&)) (62— (é))}
22,(1—Cy(R))

- 33,1 CH(R)} (4.5)

(cf. 3.17). It is easily verified by integration that the single-position distribution P§(£) is a simple
Gaussian centred on (£) with variance X, namely

ool (£—<&)*
Pt - - s (+.6)
. (271'25)% ’ '
where 2y = (EH—<5* (4.7)

and that Cy(R) is identical with Cy(7, Ry) defined by (4.1). It should be remembered that
2, (&) etc. depend on 7; for convenience of writing this dependence has been left implicit.

The echo is said to be incoherent if X, > (£)?, and coherent if X; < (). A very clear general
discussion of these terms is given by Beckmann & Spizzichino (1963, chap. 7.3). We shall show
in §5 that the echo is always incoherent in its ‘tail” (i.e. for delay times 7 exceeding o//2¢), and
whenever the surface height § exceeds about §A ~i.e. only the head of the echo from a nearly
perfect flat mirror is coherent.

To illustrate the usefulness of the distribution P§(&;, £, R) we calculate two quantities charac-
terizing the spatial fading of the echo. First, the average number of times the echo wavefunction
passes through its mean value when the source traverses unit length of a horizontal straight line,
N¢(<&€)) can be shown by an argument similar to that leading to (3.14), to be given by

2 [® B
NA®) = Jim e [ a6 [ de.Pi(6, £ dR). (4.8

|AR|—0
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626 M. V.BERRY

This can be evaluated by using (4.5), to give
N((8) = (=) [-C¢(0) % (4.9)

Secondly, the autocorrelation function of the (unsmoothed) power, Cg,(R), defined by

G —E®
Cn(R) = 1220 =2 4.10
o) ="~ 10
where the subscripts 1 and 2 denote source points separated by R, can also be evaluated by
using (4.5). We write §,, or &, as

51,2 = (51,2 - <£>) +<& (4~11)
in (4.10), and use the results (which can be obtained from (4.5) and (4.6)), that
B o SE—E) (6= )N -2
C’((é—)@))2 = <(g_<§>)4> _252 ¢ = CE (R), (4'12)
and (E— )% = 322, (4.13)

Tedious algebra then gives
_ GA(R) + (26| %) C(R)
14 2¢E)2 2, ’

a formula whose dependence on (§)?/2; shows the effect of the coherence of the echo, the limiting
values being

Ca(R) (4.14)

PN '
oo G
(o (R) (4.10)
I})\
e, > C3 (R)

4 (). The distribution of the echo amplitude

The wavefunction £ whose distribution is given by (4.5) is often not a convenient quantity
for experimental study. In order to measure the spatial fading rate N,(¢{£)) (equation (4.9)), for
instance, great care must be taken to keep the delay time very accurately fixed; because £ is
not a ‘smoothed’ quantity in the sense of § 2 (ii), any errors in 7 comparable with a carrier-wave
period would introduce oscillations in addition to those produced by true spatial fading, leading
to anincorrect measurement of N¢(¢(£)). The quantity whose probability distribution is commonly
required in the interpretation of experiments is not £ but the amplitude p, whose square gives
the smoothed power as discussed in § 2 (ii).

We calculate the distribution of p with the aid of (4.3), using the fact that the distribution of
7 must be Gaussian under the same conditions as that of £ The random variables £ and 5 are
assumed to be statistically independent, so that their joint two-position distribution is given by the
product

Pg1(E1s £a5 1,105 R) = P5(&y, £ss R) PY(711, 7, R). (4.16)
(P§(£4, &2, R) is given by (4.5).) A detailed discussion of the joint distributions of £ and 7 (un-
fortunately restricted to the single-position case R = 0 and therefore unable to deal with spatial
fading) is given by Beckmann & Spizzichino (1963, ch. 7); they show that { and # areindependent

if
Eny = &) <m), (4.17)
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STATISTICAL PROPERTIES OF ECHOES 627

and that this equation can always be made to hold by changing the phase y in (4.3) by a suitably
chosen angle ¢, (which will depend on 7 in our problem). In §5 we shall calculate {¢7) and
(&Y <{m) and show that (4.17) holds whenever the echo is completely incoherent or completely
coherent, and is a very good approximation in all cases for the present problem; thus we shall
assume (4.17) always, which greatly simplifies the mathematics. We also assume that the
variance X, and the autocorrelation function C,(R) are equal to their counterparts for the
variable £, i.e. that
2, =2, =2, say, (4.184)
C,(R) = C¢(R) = Cyy2(R), say (4.185)

(the notation in the last definition will be explained presently). The mean smoothed power is
then given by
P =8+ 7% = 22 +<E% +<™ (4.19)
The results of §5 will show that the assumptions (4.18a, b) are justified whenever (4.17) holds
— 1.e. almost always.
If the correlation function between ¥re(r, Ry) and /5 (7, Ry+ R) is denoted by C, 2(R),
this is consistent with (4.185), because (cf. 4.3)

. _ {Pre(r, Ry) Yo (1, Ry+ R)) — [<he(7, Ry) )|
Gt ) =TTl R~ Kl R B

_ (& +iny) (§—iny)) — [<E) +iCp)[?

E+9%))— KE+im]?
_ (68> —<E2+ () —<m)?
=&+ — )
_ Gi(R) [E —(&)%] + Gy (R) [5% — (] (w2)
D —<E+ % —)? ’ '

implying the second equality in (4.18) if the first holds. The autocorrelation function C.(R)

of the smoothed power — a quantity readily amenable to experiment — can be calculated in a
similar manner to Cx(R) (equation (4.14)); we obtain

2 H2 2\2
Co(R) = LR —0%)* 4.22
#R) =Gt =g 22

_ Cloyr(R) + Gy 2 (R) (KE)*+<m)*) |2

LH{E + )& '

The general two-position probability distribution of the amplitude p is obtained by trans-
forming (4.16) to polar coordinates with the aid of (4.3), and integrating over the phases y, i.c.

(4.23)

2m 2m
Py (ps; o, R) = P1P2f0 Xmfo d Yy P5(p1 COS X1, P2 COS Yo, R) PY(pysin ¥y, pasin s, R). (4.24)

This cannot be evaluated in simple closed form, but the following important results can be
derived from it:

(a) The one-position distribution P{(p) can be found, by integrating (4.24) over one of the p-
variables, to be

Pi(p) = esp - LG LD L (Lo ), (4.25)

51 Vol. 273. A
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628 M. V. BERRY

where I, is the modified Bessel function of the first kind. This is the distribution of a ‘ constant
vector +random vector’, originally derived by Rice (1945, p. 100); as a simple check, {p?) may
be evaluated, and the result (4.19) is obtained.

(b) In the commonly occurring case of a completely incoherent echo, when (£)? and (7)? are
negligible in comparison with X, (4.24) becomes

(P3+p3) } .
. (6.4 —_
Pé(pospu R) incoherent £1P2 P{ 22(1_C$c¢Z(R)) I [ C,?,cw:(R) P1P2 ] (4.26)
2L echo 22(1-Cj,px(R)) l2(1-CF e (R)) 1 ’

a result also derived by Rice (1945, p. 78). The one-position amplitude distribution for this
important case is the Rayleigh distribution,

incoherent

Pf(p)——— (p|) exp {~p?[22}, (4.27)

which follows at once from (4.25).
(¢) The autocorrelation function C,(R) of the amplitude has been evaluated by Booker et al. (1950);
using (4.26), they show that, to a very close approximation,

C,(R) = <€;§;>_—< ;/;32 mc:::m C2,4(R). (4.28)

However, this is also the ‘incoherent’ limit of the expression (4.23) for C»(R) and we conjecture

C,(R) ~ Ca(R) (4.29)

in all cases. To test this conjecture, the autocorrelations of some powers of & which has the
Gaussian distribution (4.5), have been calculated. For the two functions £ and &2, both of which
may take positive or negative values, we find

Cg—'Cga s 0.14, (4. 30)
while for the two positive functions £% and £* (somewhat analogous to p and p?) we find

ng—ng < 0.0625. (4.31)

(d) The distribution of the spatial rates of change of p can be calculated from (4.24) using the
relations
II(p,p’) = (probability that the fading rate p’ = dp(r, R)/0|R| lies between p’
and p’ +dp’ and the amplitude lies between p and p +dp) + (dpdp’), (4.32)
= lim |dR|P{(p,p+p’|dR|,dR). (4.33)
|dR|—0
The limit, which is evaluated in appendix 1, yields

Pp(p) exp {—p"*/22X[ — Cy, 2 ()1},

H(p’p ) = [_27520”“)#:(0)]1} 2

(4.34)

where P{(p) is the Rice distribution (4.25). This means that p and p’ are independent random
functions, and the fading rate satisfies.a Gaussian distribution, whose r.m.s. value is

(p'iyt = [—ZCy, 42 (0)]3. (4.35)
We shall make use of this result in §7 (ii) to derive the ultimate positional sensitivity of echo-
location.
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STATISTICAL PROPERTIES OF ECHOES 629

(€) Rate of crossing a given amplitude level. The waxing and waning of the amplitude p as the
source position R, varies (with 7 kept fixed) can be described by

N,(py) = average number of times that p passes through a datum level pp, when

the source traverses unit length of a horizontal straight line, (4.36)
. 2 Pp ®

= lim 2 [ dp [" dpuPL (o, o ). (4.37)
lari-o [dR[Jo ’o

This double integral is evaluated in appendix 1; the result is

N,(pv) = Pr(pn) | 2O (4.38)

1

As expected, the fading rate is very small if pp, is very large or very small, since it is unlikely that
the amplitude would reach such a level. The fastest fading rate occurs when P{(pp,) isamaximum,
and a study of (4.25) shows that this maximum rate varies with the degree of coherence. The
fastest fading rate of all occurs when the echo is completely incoherent; the corresponding datum
level is

pRax = X% (4.39)
(i.e. 1//2 of the r.m.s. value of p, cf. (4.19)), and the maximum fading rate is
—2Cy, ,x(0)
Nmax — Yol ] . 4.40
P [ ne (4.40)

5. CALCULATION OF AVERAGES

We have found in §4 that, under the commonly satisfied condition (4.2), all the statistical
properties of the echo can be derived from the two ensemble averages

_ (pe), = (re(T, Ry)) (5.1)
(which is independent of R,), and

{pyexp {ixs} paexp{—ixa}), = {¥e(7, Ry) Y& (7, Ry+ R)) (5.2)

(which depends on R but not R). In this section we shall employ the diffraction theory of
§2.1 to calculate these averages and, in addition, the averages (£7), {¢2) and {#2) which will be
used to establish the validity of (4.17) and (4.18), on which much of the simplicity of the results
of §4 depends.
5(i). Average echo wavefunction

Considering first the case where the reflectivity is unity (i.e. surfaces & and £ of §3), we use
(2.12) applied to the complex echo wavefunction; the integrand of this expression involves the
surface height f(R) at a single point, so that we may perform the averaging with the aid of the
single-position probability distribution P{(f) via (3.2). The result is

pexpli. = gy [ [aR (re (r+ LB BRI
~ g aspin [[am (r4 2 BZR)

——a| " apn R (e ) = - (R4 X)), (5.3)
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630 M. V. BERRY

Thus the average echo is a smoothed version of the echo (2.13) which would be received from
a perfect mirror; the smoothing function is P{(f) whose extent is governed by the r.m.s. surface
height S. Because of the quasimonochromaticity of the outgoing pulse F(f) and Fe(t), this
smoothing reduces {p exp {ix}), to zero whenever § approaches A. More precisely, the models
(2.2 to 2.4) and (3.5) can be used in (5.3), to give the exact result

. Aexp { o1 f;i‘z/az)} <P { - /\2(1%7t ;92/202)} xp { 1 +'i (é)g‘;/az}
(pexp{w})T == 2ﬁ\/(1+8S2/0’2) . (5'4)

The second exponential factor indicates that the average echo wave is reduced to about 30 9%,
of its perfect-mirror value when § ~ §A, and about 19, when S ~ 2. A fortiori, {p exp{ix}), is
utterly negligible whenever S approaches o (cf. 1.1), so that the quantity 852/c% can be neglected
throughout (5.4) to give the following simpler expressions, which are valid to a very high degree
of approximation:

(pexp (i}, = — 2 exp{ — 8SYA exp { -1 exp (—iv,7)
_ oxp{=SESYA} Fulr)

= (5.5)
The average real wavefunction is
— 82N F
& = (r, Ry)y = - RASTHAIT), (5.9)
— 2Q2/ )2
while @ = Im (Pe(r, Ry)) = -e’q”{;——-%gﬂlmm(f). (5.7)

These results show that the form and duration o/c of the average echo wavefunction mirror the
original pulse. However, the echo received above any particular point (i.e. not averaged),
generally has a long tail. We may reasonably conjecture that the zeros in this tail are quasi-
periodic with the carrier frequency w, but their locations wander over several carrier-wave
periods as the source-receiver is moved. Thus the tail in {£) is washed out by phase averaging,
and to investigate the statistics of the asymmetrical broadening of the echo it is necessary to
calculate product averages such as (£2) or {p?); this will be done in §5 (ii). The vanishing of (&)
due to phase averaging, which also occurs in the main body of the echo if §' X A corresponds to
incoherence as defined in §4 (i) (following (4.7)).

None of the results of this section involves the two-position surface distribution function
Pi(f1, fo» R) defined in (3.6), so that measurements of (§) can never provide information about
the correlations between different parts of the surface. But it is possible, at least in principle,
to take advantage of the ‘convolution’ form of the penultimate member of equation (5.3) to
obtain PJ(f) in the form

0 1 r
Pl(f) = “72:_?( o WA R‘}lz(j)x p{Ziof} (5.8)

As a practical method for determining P{(f) this equation suffers formidable disadvantages,
as discussed by Berry (1972) in connexion with the more general ‘surface function’ g(r) involved
in deconvoluting echoes which are not averaged; these disadvantages are due to the quasi-
monochromaticity of the incident pulse.
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STATISTICAL PROPERTIES OF ECHOES 631
In the case of the flat surface y (§3 (iii)) calculation of {p exp{iy}), is trivial; we have

(pexp{ix}) = - @ff(ﬂ (5.9)

and corresponding results for (§) and {#), so that once again the average wavefunction has the
‘perfect-mirror’ form, and the only effect of reflexion at the surface is to reduce the intensity.

5(ii). Average product of echo wavefunctions for two different source-receiver positions

AL A

The average product (5.2) of the complex wavefunction will be evaluated initially for the

SOCIETY

two rough surfaces @ and 8. The first few steps of the argument may be written successively as
. . 1 , 2f(R,) (R;—R,)?
prexp {ixs} paexp { —ixe}), = m”deﬂdRz<Fc (T+ f(c y_(B - )
— — 2
¢ ch
= mf_w do, . dwy 0y 0y G(0, — w,) &* (W, — )
5 x exp { —i(w; — w,) T}fdelf dR,
x exp {(i/Ac) (0 R} — ws| Ry — R|?)}
x {exp{— (2i/c) (01 f(Ry) — 0, f(Ry))}> (5.11)
1 © © _ _
= mj dwlf dwy 0, 0y d(W; — wy) G* (Wy— w,)
x exp {—i(w; — w,) T}fde f dR,
x exp (i/e) (0, R~ 0 Ry = RIDIP (%22, 222, | Ry - Ry
(5.12)
1 0 , 0 0 _ _
= W’fo dr fo dwlfo dw, 0, Wy d(w; — wy) @* (Wy — w,)
ol x exp { —1(w; — w,) (T—T')}.]O(2R A/‘—ui;-%zﬂr—)
, Wy W7’ wzfr 2(02 20, .
dRRJ 2R’ . R (5.13)
The first equation, (5.10), follows from the basic diffraction integral (2.12). To obtain (5.11)
the Fourier representation (2.3) of the pulse envelope «4(7) has been introduced, and (5.12) has
been obtained by using the two-position surface distribution function (3.8). Finally (5.13),
involving the dummy delay time variable 7" which labels the different rings of the annulus
contributing to the echo at 7 (figure 2), can be derived as explained in appendix 2 (we have
also restricted w, and w, to positive values, thus incurring an error depending on the tail of the
n function d(w) when w > w,, which can be shown from the model (2.4) to be of order
0
exp { —w20?A%;
this is utterly negligible in view of (1.1)).



http://rsta.royalsocietypublishing.org/

'\
/N
JA \
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\

y \

N

0\

A A

Py

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

632 M. V. BERRY

To proceed further we must perform the integrals over R’ in (5.13). For the surface  we use
(8.18) together with the model (3.20) and the substitution (3.23), while for surface £ we use
(3.25) and the model (3.28). The R’-integrals are standard (see, for example, Gradshteyn &
Ryzhik 1965), and the result is

. . 1 <] [ee} ~ ~ .
presp fipresp (=i, = g [ do [ doya(0, - 00) (0, — o) exp {—ilw,~0) )
X {exp {—285%(w? + w3)/c% +fw dr’ exp {i(w, — w,) 7'}
0

x Qusoy ™) Jo(2R [122T)

 [exp (~ 280~ 09 —exp (~ 2%+ o)), (.14

where
~  cL? 0 5 T'cL? 2 .
Q(wy 0y, T") = G (1 —exp{—485%0w, w,[c?}) exp | — S (1—exp{—4S%w,w,/c?})| (surface a),
5.15
1 ch 7} ,+ ch )—% (surface ) §5 16)
~ 2| 4w 0, L2 T 4w, 0, L2 suriace ). -16)
It is to be noted that fw d7'Q(w; e, 7") = 1. (5.17)
0

The final step in arriving at a manageable expression for {p, exp {iy,}p,exp {—ix,}), is the
performance of the integrations over w; and w, in (5.14). We do this by employing the quasi-
monochromaticity assumption (1.1), which implies that the pulse envelope a(¢) is a slowly-
varying function of ¢ so that @(w) is concentrated near o = 0, and only the ranges

Wy R Wy, Wy R W
contribute significantly to (5.14). More precisely,
| —w,| S ¢fo (5.18)

since /¢ is the pulse duration. To take account of this, we replace w3 + w§ by 2w, and w; 0, by ©3
throughout (5.14). A careful analysis of (5.14) reveals that the only place where these substitu-
tions may lead to appreciable error is in the Bessel-function factor when R or 7’ are large, and
it is necessary to impose the following restriction on the separation R of the two source-receiver

positions:
R < AR(7"), (5.19)

where AR(7’) is given by (2.16). Now, we shall see in § 6 that only values of 7" which are approxi-
mately equal to 7 contribute to the echo integrals, so that (5.19) has the physical interpretation
that the annuli on the surface (figure 2) beneath the two-source-receiver positions must overlap
all around their perimeter, and essentially the same surface irregularities contribute to the echo
at the two positions. Fortunately, this is not a serious restriction on R, since we shall find in §7 (i)
that the ‘fading wavelength’ — which gives the scale of the spatial correlations in the echo —
is considerably smaller than AR(7), and, further, that there is generally no correlation at all
between source-receiver points whose separation is as great as AR(7). After making these sub-
stitutions for w?+w? and w,w,, it is easy to perform the integrations over w, and w, using
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elementary theorems of Fourier analysis. The result is
rexp i puesp (=i, = [(pexp liel* + [ “dr Qo )
N\ [{a2(r — 1"+ (2 :
X JO (2Rw0 A/Z_}l) [<a (T 1}12 ( ﬂ6)> - |<P exp {IX}>1—T’|2] )

where {pexp {ix}), is given by (5.5), and (5.20)
(a¥(1—T1"+ (2f]c)) = f_: dfP{(f) a¥(r— 7'+ (2f)c))
cXP{—-_2(T"T')202 }
_ o2(1 1 165707 5.1

JA+ 165507 °

so that this function closely resembles the original pulse power envelope, broadened only if
Sz io.

Equation (5.20) is the central analytical result of this paper; it contains a wealth of physical
meaning, which will be explored in §§6 and 7. First, however, it is necessary to tie up some
loose ends from §4 (ii), namely the investigation of the validity of the statistical assumptions
(4.17) and (4.184) (we leave (4.185) to the interested reader — its proof is essentially the same
as (4.18a)). These two equations are respectively the imaginary and real parts of

(pPexp {2ix}), = pexp {ix})7. (5.22)
The arguments which led from (5.10) to (5.20) are easily adapted to this case (which is actually
rather simpler, because R is zero) and yield

a?(r)

(pexp {2ix}y, — {pexp{ix})? = i X { — 21w, 7} [exp { — 167252/A%} — exp { — 327252/A%}]

x %’f f " dR'R’ exp {—iR'%w,Jck} W(R), (5.23)
0

45203 R'?
c2L%(exp {4S2w3[c?} — 1)

=exp{—R'[L} (surface B).

where W(R') = exp [— ] (surface a),

(5.24)

The r.h.s. of (5.23) is zero for the cases of completely coherent reflexion (§ < $A) and completely
incoherent reflexion (§ > $A) and reaches a maximum value of

[{p2exp {2ix}), — (o exp {ix})2| max = @2(7)[32h2, (5.25)
which occurs when §=0.07A and L2> hiA[2T, (5.26)

corresponding to a rather particular gently undulating surface of very low relief. The upper
bound (5.25) is likely to occur only infrequently and is in any case rather small, so that no
serious approximation (and certainly no qualitative error of interpretation) arises if (5.22) is
taken as being true in all cases.

Having demonstrated the applicability of all the statistical equations (4.17) to (4.40), we
now write down the two basic quantities involved in them. The first is the variance X of & or 7;
from (4.18a), (4.19) and (5.20) (with R = 0), we have (writing the 7-dependence explicitly)

2(r) = % f 0°° dr' Q (w3, 7") [<“2(T‘Z,; @ffe)) [<pexp {ix}>1_f»|2], (5.27)
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634 M. V.BERRY

where {pexp {ix}), is given by (5.5). The second is the autocorrelation function Cy, ,2(R) of £ or 7;
from (4.1), (4.185) and (5.20) we have

Gyt () = Gyl ) f dr’ Q(wg, ) J, (2Rw0 / h)[ :;((T) 1};' (2ffe)) l(pexp{ix}>1_7,|2]-

(5.28)

Finally, we write the corresponding equations for the surface y, which can be derived in a
straightforward manner by the methods used throughout this section:

© 2(pr !
2(0) = 42— @ [ ar g T, (5.2
f d7'Q,(7") J, (2Ra)0A/—)a2(T 7')
me‘(R) = C,/,(T, (5.30)
| e, -m)
N L0} , )
where Q1) = 5 — w3 L*r'[ch}  (autocorrelation model 3.20), (5.31)
3 -4
= %(15?2—2) (7' +4—a)€2£—[,2) (autocorrelation model 3.28). (5.32)
0 0

These results for the three types of surface can be written in a unified form for the commonly-
occurring case where § < 0. We define a ‘coherence parameter’

0 = exp{—16n352/A?} (surfaces a, B, (5.33)

={ZY*(Z*) (surfacey), (5.34)

whose value lies between 0 (complete incoherence) and 1 (complete coherence). We define also
Q") = Q(w3, ") (surfaces «, f), (5.35)

= Q4(7") (surface ), (5.36)

so that Q(7') is a monotonically decreasing function of positive 7" whose form depends on the
rough surface and whose integral (from 5.17) is unity.
Then (5.27) to (5.30) become

2(r) =82 (1-9) [ areaa-m), (5.37)

(s<a')J. dr’ Q(T 2Ra)0,\/ /ch 42(7' 7.)

Cy(,R) =
Y fo d7'Q(7") a?(r—171')

(5.38)
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6. THE AVERAGE ECHO POWER
This is (¢%(7, R,)) which from (4.7) is given by the sum of its coherent and incoherent parts

P37, Ro)) = (P (7, Ro) )P+ 2(7), (6.1)
where (¥ (7, R,)) is given by (5.6) and X(7) by (5.27) or (5.29). The average value of the smoothed
echo power is given by (2.19) and (4.19) as

(P27, Ro))smy = Kp®r = §[<ie(7, Ro)H|*+ 2(7), (6.2)
where (Y¢(7, R,)) is given by (5.1) and (5.5). The order of the operations of time-smoothing
and ensemble averaging is immaterial, since it is obvious from (6.1) and (6.2) that

P27, Ro)Dsm = {(¥3(7, Ry)) sm)- (6.3)
In the following nine subsections we shall explore the physical content of equations (6.1) and
(6.2). ‘
6 (i). Total energy in the echo
The arguments of this section are restricted to the rough surfaces @ and f, for which the
reflectivity Z(R) is unity. The total energy E is defined as
E=|" dryr, Ry)). (6.4)

By applying the methods of § 5 (ii) to (2.12), it can be shown that

E= f * arpn) (6.5)

exactly. Thus, within the Fresnel approximation, the energy received back from a totally re-
flecting rough surface of arbitrary form, with pulses which need not be quasimonochromatic,
is, on average, the same as would return from a flat mirror — a result which is almost obvious.
The minor approximations introduced towards the end of §5 (ii) mean that (6.5) does not hold
exactly for our calculated echo power (6.1); but the error is of order exp { — 2rn202/A%} which
can certainly be neglected in view of (1.1).

6 (ii). The form of the echo tail

The most obvious property of {¥?(7, R,)) is the asymmetrical lengthening of the pulse to
include long positive delay times 7; this effect, produced by the integrals over 7’ in the expres-
sions (5.27) and (5.29) for X(7) contrasts with the behaviour of (¥(r, R,)), whose duration is,
from (5.6), the same as that of the original pulse, i.e. o/c. For the average echo power, therefore
(either smoothed or not smoothed), we require the asymptotic form of X(7) when 7 > o/2¢.
The functions {a*(7—7"+(2f]c))), {pexp{ix}),—, and @*(r—7") in (5.27) and (5.29) are all
localized near 7" = 7 because of the finite duration /¢ of the pulse F(¢), and Q(w}, 7’) and Q,(7')
may be treated as constant for this range of values of 7/, and taken outside the integrals for X(7).
Making use of (5.5) and (6.5), the results given by this procedure are

T>0/2¢

2(1)—> Q(w},7) E(1—exp{—16n352/A%}) (surfaces a, f), (6.6)
0 Q1) EKZ2—(ZY)  (surface 7). (6.7)

If the surface relief is extremely low, and the reflectivity almost constant, the factors in ( )
vanish in (6.6) and (6.7) and the echo tail X(7) is of zero strength, as would be expected in this
case, which corresponds to a completely coherent echo. Any echo for which an appreciable tail
is observed may safely be considered as completely incoherent, since the transition between

52 Vol. 273. A.
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coherence and incoherence takes place within a narrow range of values of § centred on {A. The
manner in which the echo decays to zero with increasing 7 depends on the functions Q (w3, 7)
and Q4(7). These are given by (5.15), (5.16), (5.31) and (5.32) for exponential and Gaussian
autocorrelation functions defined in §3. For general autocorrelation functions, the Q-functions
are given by the Bessel transforms

(08, 7) _ 203 J‘ dRRJ, (2Rw0 J %z) oy (c T _efsg)i]i S /62})) (surface ), (6.8)

2wof dRRJ, (2Rw°A/-c:rf_z) Ci(R) (surface f), (6.9)

Q,(r) = 2% f dRRJ, (212% A/clk) C,(R) (surface ), (6.10)

where a simple generalization of the substitution (3.23) has been used in arriving at (6.8).
These equations can easily be inverted to obtain the surface autocorrelation function Cy(R) or
C(R) from measurements of the echo tail (), provided the nature of the surface is known.
This type of inference will be discussed in § 6 (ix).

6 (iii). Duration of the echo

We define the echo half-length T as the time measured from 7 = 0 (i.e. ¢ = 24/c) which must
elapse on average before half the total received energy has arrived back at the source; thus
(cf. 6.4)

! dr {Y*(r, R,)) = LE. (6.11)

The exact expression for 7 is rather complicated, and we shall content ourselves with a good
approximation (exact when the echo is perfectly coherent or perfectly incoherent), which con-
sists simply in taking the mean of the separate half-lengths of the coherent and incoherent parts
of the echo, weighted according to their relative strengths. The coherent contribution {{(7, R,) )*
has a half-length of zero (i.e. half of it has arrived by the instant 7 = 0) and a strength

exp { — 167282/A%

(cf. 5.6) for surfaces @ and S and {(Z)? for surface y. The incoherent contribution Z(7) has a half-
length T, given very accurately (cf. 5.27) and (5.29) by

Tz
Q(r)dr = 3, (6.12)

where Q(7) denotes Q(w3,7) or Q,(7), and a relative strength given by 14 for the rough sur-
faces « and B and (Z2) (1—4) for the flat surface y. Thus the approximate echo half-length is

T = Ty(1-9) (6.13)

for all surfaces, where 8 is given by (5.33) and (5.34).
The quantity 7 can easily be calculated from (6.12) to give the following final expressions
for the echo half-lengths:

T = 2.77h8?%/cL?* (surface @), (6.14)

3hA%

= Tonlt (1-9) (surfaces g, y). (6.15)
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STATISTICAL PROPERTIES OF ECHOES 637

(In fact the half-length for surface y depends to a small extent on whether the surface auto-
correlation function (8.20) or (8.28) is used, but this only affects the numerical factor in (6.15)
by a small percentage.)

P2 (7, Ro))
2
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FiGure 3. , Computer calculation of average echo power for long-wave case (undulating rough surface
o, A =3,0 =10, k = 100, § = 0.3, L = 4, r.m.s. surface slope = 6.07°, half-power time 7 = 1.56/c); ————,

echo from flat mirror surface.

The evaluation of T provides a useful test of the applicability of the Fresnel approximation to
Kirchhoff’s integral introduced in §2(i). In order for our treatment to give a quantitatively
accurate description of the bulk of the echo power, T'must be sufficiently small that 6(7) (equation
(2.17)) does not exceed about 45° (equation (2.10)). Thus we require that

T < 0.83h/c. (6.16)
In the case of the undulating surface «, this condition may be expressed with the aid of (6.14)
and (3.22) as (F2) < 0.6, (6.17)

where {(f’?) is the mean square surface gradient; thus the average surface slopes should not
exceed about 40°. This result has an obvious interpretation in geometrical optics (see §6 (viii)
below). For the surfaces £ and y the applicability condition (6.15) implies

AL < 6.6, (6.18)

where we have simplified to the case of complete incoherence. The physical interpretation of
(6.18) is that the Fraunhofer diffraction pattern of radiation from a horizontal irregularity of
size 4L (cf. 8.29), illuminated at an angle of 45° to the vertical, is insufficiently wide to reflect

significantly back to the source.
52-2
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6 (iv). Long-wave limit
In this case A so greatly exceeds the height § of surfaces & and f that the irregularities are not
perceived by the exploring pulse, which is reflected as from a perfect mirror. The condition for
this is
A> 4nS, (6.19)
which does not involve L (cf. 5.33). When this condition is satisfied, the variance 2(7) vanishes,
due to the cancellation of the two termsin [ ] in (5.27), and the echo is completely coherent, the
power being given by {y(, R;))»? (cf. (6.1)) which in this case takes the ‘perfect-mirror’ form

long wave F(T) 2

(7, Ry)) —— (6.20)

(cf. (2.13)). According to (6.19), however, this limit is only reached for very smooth surfaces —
the pulse ‘picks up’ any irregularities whose r.m.s. height exceeds about 0.1A, as illustrated by
the partial quenching of the oscillatory part of the echo in figure 3.

For the flat surface y the long-wave limit is identical with the Fraunhofer limit which will be
treated in §6 (vi).

6 (v). Smooth-surface limit

This occurs when the horizontal dimension L of the irregularities is large. The precise condi-

tions are

h
L> 2S4/0'(1—exp{—16n2S2/)l2} (surface ), (6.21)
L>» Ak (surfaces g, y) (6.22)
2nA o P )

which enable Q (w3, 7) and @,(r) (equations (5.15), (5.16), (5.31) and (5.32)) to be replaced by
| Qalr) = Q) 8(7) (6.23)

in the integrals (5.27) and (5.29), so that the variance becomes
2(7) —>% [@(LE—-——}W — [Kpexp {ix})7|2] (surfaces a, f3), (6.24)
1(Z2 — (zy 20 f 6.25
SHE (25D (suface ), (6.20)

where {a2(1 + (2f/¢))) is given by (5.21). Using (6.1), (5.6) and (5.9), we obtain, for the mean
echo power:

L—>w 2(Q'2

(21, Ry))—> 2.ih2 {<a2 (T +2_cf)> + exp{—— 16;2S }az('r) cos 2(007} (surfaces a, f), (6.26)
L—>w 612(7
X

{({Z*) +{Z)2cos 2w,7} (surface y). (6.27)

Actually, these expressions are not quite accurate; the factor exp {—167252/A%} in (6.28)
should be replaced by exp { — 32r25?/A?}, and the factor (Z)*in (6.27) by (Z2). The errors arise
from the statistical assumptions (4.17) and (4.184) (it is not surprising that these assumptions
may break down in this case, where the surface is flat and has constant reflectivity, over the
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‘neighbourhood’ seen by the source-receiver). The errors are, however, rather small (cf. the
discussion after (5.24)), and do not affect the average time-smoothed power {(¥%(7, R;))sm>
which is obtained from (6.26) and (6.27) simply by setting the oscillatory factors cos 2w, equal
to their mean value of zero. It is possible to evaluate the smooth-surface limit exactly by averaging
the square of (2.12) directly, setting the surface autocorrelation functions C;(R) and C,(R) equal
to unity. The results are

4h?
L—w <Z2>

f¥(1, Ry) ) —> Ve F?(1) (surface y), (6.29)
which can easily be seen to differ from (6.26) and (6.27) in the manner stated, and to have the
simple physical interpretation that in this limit the echo power is reflected as from an ensemble
of mirrors whose heights and reflectivities are individually constant, but differ from different
members of the ensemble. Since both terms in (6.1) may contribute to the echo, it is neither
completely coherent nor completely incoherent in this case.

e, Ry —> QIO o [ app{(f) oot (211) - (usfaces o, 9), (6.29)

6 (vi). Fraunhofer limit

This is the opposite case to the smooth-surface limit: the source-receiver is so far above the
surface, or the irregularities so small, that the exploring pulse perceives the surface as ‘com-
pletely rough’ (this is the situation encountered in pulse echo investigations of the Moon and
planets — see Beckmann & Spizzichino 1963, ch. 20). When the conditions

2
h> 71— exp {~ 16m8Y2)  (surface o), (6.30)
272
k> f"_/é_ﬂ' (surfaces g, y) (6.31)

are satisfied (which are much more restrictive than (4.2) which merely guarantees that the echo
statistics are Gaussian), the functions Q (3, 7") and @ ,(7') are very small, so that the incoherent
component X(7) of the echo power is very small ((5.27), (5.29)). Thus, from (6.1), the echo
power is given by the short-lived coherent component alone:
Fraunhofer limit
PA(7, Ry)) ————> <Y (7, Ro))?, (6.32)
where (¢(7, R,)) is given by (5.6) or (5.9).
It looks at first sight as though in the Fraunhofer limit the echo violates the total-energy equa-

tion (6.5), because
© — 2Q2/)2 <)
[ drcpstr myy = RIS ™ gy (6.33)

— 0

But this is not the case, because the incoherent component X(7) of the power, whose magnitude
is very small, has a very long duration T (cf. (6.14), (6.15)), so that the echo has a long weak
tail, which can easily be shown to contain the missing energy. This is illustrated by the computer
calculation of figure 4.
6 (vii). Continuous wave limit
This is the case where the original pulse is monochromatic, so that the pulse-length o is
infinite, and (cf. (2.2), (2.4)) we may take

F(t) = Acoswyt. (6.34)
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The variance 2(7) is easily calculated using the property (5.17), leading to the result
o—>0 2 2
P (1, Ry) ) —> 1—42—21—22 (14 cos 2w,7) (6.35)

which applies to all three surfaces. This expression closely resembles the ‘smooth-surface’
results (6.26) and (6.27), and, indeed, requires the conditions (6.21) and (6.22) to hold for its
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FiGure 4. Computer calculation of average echo power for Fraunhofer case (undulating rough surface
s P g p g g

a, A =38,0 =10, h = 1000, S = 0.375, L = 1.875, r.m.s. surface slope = 16.2°, half-power time 7" = 110.8/c);
~———, echo from flat mirror surface.

6 (viii). Geometrical-optics limit
In this case, which is the opposite situation to the long-wave limit treated in §6 (iv), the wave-
length is so short that for the surfaces o and £ all oscillatory effects are washed out by phase
averaging, and the echo power is the same as would be received if a burst of particles were emitted
from the source with time-dependence 34%(¢), and reflected specularly from the rough surface.
This requires the condition A < 47, (6.36)

which causes the coherent term {¥(7, R,))? in (6.1) to vanish in view of (5.6), and the second
term |{pexp{iy})|?in (5.27) to vanish in view of (5.5). Thus the echo is purely incoherent in
this limit, as illustrated in figure 5.
For the undulating rough surface «, the geometrical-optical average echo power is, using (5.15),
geometrical 1 L2

(7, Ro)) X f 0°° dr’ exp{—%%%:} (@ (=14 (2f]0))). (6.37)

optics
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The physical meaning of this expression is that for each time delay 7 there are contributions to
the echo from a small range of time delays 7’ (the duration of the range being roughly o/c),
resulting from specular reflexion from parts of the surface inclined to the horizontal at an angle
0(7") given by (2.17) (see figure 2). The surface slopes f* & 6(7") possess the Gaussian probability
distribution I7( f’) given by (3.22), whose exponential factor,

exp { — L?f'?/48%} = exp {— cL?r'[4hS?}, (6.38)
is exactly what appears in (6.37), expressing the improbability of finding slopes on the surface
sufficiently steep to return echoes after long time delays.
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Ficure 5. , Computer calculation of average echo power for geometrical optics case (undulating rough
surface @, A = 3, o = 10, £ = 100, § = 3, L = 15, r.m.s. surface slope = 16.2°, half-power time T"= 11.1/c).

For the stepped surface S, the geometrical-optical average power is, using (5.16),

geometrical optics 1 9
WA Ry (), (6.39)

expressing the fact that only those steps immediately below the source-receiver are capable of
specular back-reflexion. This result is the incoherent (A->0) limit of the smooth-surface expres-
sion (6.26).

For the flat surface y the geometrical-optics limit is identical with the smooth-surface limit
(6.27).

6 (ix). Inferences about the surface from the average echo power

We are concerned in this section with what is theoretically possible, not what is practicable
(this will in any case depend on the particular experimental situation). If the nature of the
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surface is known a priori, then it is not too hard to obtain information about the surface parameters,
by measuring the echo half-length 7. For instance, suppose the surface is known to be of the
undulating ‘Gaussian’ type «, considered in §3 (i); then the r.m.s. slope 4/2S/L can be inferred
directly from a measurement of 7" by using (6.14). In the general case, where nothing is known
a priori about the surface, the problem is more difficult; to simplify it, we assume that the surface
is one of the three types introduced in §3. These surfaces are physically very different, so that
this procedure does take some account of the enormous diversity of natural rough surfaces.

The first step is to discover d, the degree of coherence of the echo, defined by (5.33 and 5.34).
This is most easily done with continuous waves (§ 6 (vii)), by measuring the unsmoothed ensemble
average (¥%(7, R,)) in the ‘neighbourhood’ under investigation. According to equation(6.35),
this quantity is the sum of an oscillatory term and a steady term, the ratio of whose strength is
simply 8. This ratio can be measured; if its value is close to unity, then the reflexion is coherent,
and all that can be inferred about the surface is that it is flat on a wavelength scale, with a
reflectivity which hardly varies with position. If ¢ is less than unity, then the surface roughness
is appreciable. To distinguish the undulating («) and stepped (/) surfaces from the surface of
varying reflectivity () it is merely necessary to alter the wavelength and observe the effect of
this on the ratio of the oscillatory to the steady parts of the echo; if the ¢ decreases as A de-
creases, then we know that we are looking at either an undulating or a stepped surface, and the
r.m.s. height § can be inferred from (6.35), while if ¢ does not alter as A varies, then we know
that the surface is flat, and the ratio (Z)?/(Z?) can be inferred from (6.35) (we assume that Z(R)
does not vary significantly with A in the range of interest).

Armed with this information, the next step is to use a finite pulse length o, measure the echo
halflength 7, and use equations (6.14, 6.15) to infer L. If the surface has been found to be flat,
then (6.15) can be employed directly to find L, since {Z)?/{Z?) has already been found, and %
is known from the time delay of the echo as a whole. To distinguish undulating and stepped
surfaces, the wavelength dependence of 7 is investigated. If 7" is constant as A varies then the
surface is undulating, and L can be calculated from (6.14). If 7T varies with A, then the surface
is stepped, and L can be calculated from (6.15).

The final step is to infer the surface autocorrelation function C;(R) or C,(R) from the form
of the incoherent tail of {(}*(r, R,)) which according to §6 (ii) is proportional to @ (7).

Equations (6.8) to (6.10) can be inverted, to give

® RSw,
fo dTQ(T)Jo(ngO A/%) ¢ (c T /62})) (surface a),
= Cy(R) (surface f8),
= Cy(R) (surfacey).

(6.40)

This method may enable C(R) to be determined for small or moderate R, since the integral in
(6.40) then depends on Q(7) for large 7 but will fail at large R, since the integral then depends on
Q(7) for small 7 — i.e. not on the tail at all.

Thus it is possible, at least in principle, to employ measurements of the average echo power
{Y?(1, R,y)) to infer the nature of the rough surface, the parameters L and § or {(Z)?/{Z2), and
the autocorrelation function C;(R) or C,(R), i.e. all the statistical quantities introduced in §3.
No information about the surface can be obtained from the statistics of the spatial fading ob-
served as the source-receiver position R, is varied, but we shall see in § 7 (ii) that this fading can
provide a very sensitive method of defining position relative to the surface as a whole.
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7. THE SPATIAL FADING PATTERN

Spatial fading is the variation of the echo as the source-receiver is moved. We are concerned
in this paper only with horizontal movement, where R, varies and % is held fixed (as is the delay
time 7). The discussion will be divided into two sections: the first (§7 (i)) will be concerned with
the spatial frequency and spectral purity of the pseudo-periodicity observed in the fading, while
the second (§7 (ii)) will be concerned with the sensitivity of the echo to small changes in R,.

7(i). Periodicity of the fading
The simplest quantity characterizing the spatial quasiperiodicity of the echo is the average
number of times N, that the echo wavefunction ¥(7, R,) passes through its mean value when the
source-receiver is moved horizontally along unit length of a straight line, the time delay 7 being
held fixed. (For the incoherent scattering with which we shall be principally concerned in this

section, the mean value of §(, R,) is zero.) Writing the 7-dependence of N, explicitly, and using
(4.9) together with (5.28) and (5.30), we obtain

e7(T)

N = 152, (1.1
where 7(7) is a ‘modified delay time’ defined by
f dT'T'Q W, 7') [<42(T 74]’1" (2ﬂc ) KPCXP{U(})T—Tl ]

f dr'Q(w3, 7 [< a(r— 14;—:—2(2f/c D |<P€xp{lx}>7-fl]
[ arreumyae-1)

7(1) = (surface ), (7.3)
f dr'Q,(1") a*(7—1')

(surfaces o, B), (7.2)

a quantity the significance of which will be discussed in a moment. It is simpler in practice to
measure the fading frequency for the amplitude, N, as discussed at the beginning of §4 (ii).
The fastest spatial fading occurs when the amplitude p crosses the datum level 2% (4.89), and

(4.40) and (4.9) show that
Npex(7) = 1.52N,(7), (7.4)

so that calculation of the quasiperiodicity of both p and £ requires a knowledge of 7(7).
For observations in the echo tail, i.e. when

7> 0/2, (7.5)

it is easily seen from the temporal localization of a*(7) and {pexp {ix}), that (7.2) and (7.3)
simplify to
7>0/2¢
7(1) — 1. (7.6)
When 7 is not large, it is generally necessary to evaluate the integrals in (7.2) and (7.3) without
approximation, but in the important class of situations where the echo has a long tail, more

precisely when
T> o/, (7.7)

53 Vol. 273. A.
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analysis of the integrals defining 7(7) shows that the following approximation holds:
J‘ :) d7'r'a®(r —1")

B fow d7'a*(t—1") .

This expression is independent of the form of the surface, and involves only the form of the
pulse envelope a(t). By using the model (2.4), 7(7) can be evaluated in terms of the comple-
mentary error function; the result is

7(7)

(7.8)

7(7) = %;d—dT [ln (exp {27%2/0?} erfc (-— «/i—m'))] , (7.9)
which has the limiting behaviour
e
7(r) 22255 0.400/C (7.10)

7

T, > 02402 1]

7 (1)]o

1.5+

1.0+

0.5+

| | | J
—1.0 —0.5 05 10

=\
o

cTlo

Ficure 6. Modified delay time 7(7) required to calculate the spatial fading frequency of the echo.

Figure 6 is a graph of the function 7(r), which enables the fading frequency Ny(r) or N,(7) to
be predicted via (7.1) and (7.4) for any delay time 7, provided (7.7) holds. It is not expected
that this procedure will always give quantitatively reliable results when 7 is large and negative,
because then the echo arises from the very early returns from isolated high points on the surface,
and may not have the Gaussian distribution assumed in the derivation of (4.9).

The results (7.1) and (7.8) can be obtained from an elementary physical argument first given
in outline by Robin et al. (1969). For a source-receiver position P, the echo at time delay 7
comes from an annulus on the surface (figure 2), whose width is AR(7), given by (2.16). If the
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source-receiver is displaced horizontally by AR, so that it now lies at P,, then essentially the
same region of the surface contributes to the echo, provided that

|ARy| < AR(7). (7.11)
But the phase of the contribution from a point M on the annulus is different for the two source-

receiver positions, because the path lengths 2P, M and 2P, M are different (figure 7). If M has
an azimuth angle ¢ (measured from the direction of AR,), then the change in path length is

2P, M —2P, M = 2|AR| sin 0 cos @, (7.12)
and the phase change Ay in the contribution from M is
Ay = (4n/X) |ARg| sin 0 cos ¢. (7.13)

Ficure 7. Path difference contributing to spatial fading.

The mean distance |ARg|, between adjacent zeros of the echo wave function y(7, R,) corresponds

to a change of = in some average value of Ay over the contributing annulus. If this average is taken
as an r.m.s. value, then (7.13) gives

1

N(r) =

ARL" %(M%. (7.14)

To evaluate the annulus average sin? cos? ¢, we recall our assumption that the source radia-
tion pattern is azimuthally symmetrical, and realize that the strength of the contribution from
M will be proportional to the square of the pulse envelope, a*(7 —7"), where 7’ is the time delay
corresponding to 0 (thus 7’ labels the different rings in the annulus of figure 7). We have

lfm d7’sin20(7") a®*(1—7")
2J)o

foo dr'a?(r—171')
0

_ o7 (1) (14 c7(7)[4h)
2h(1+ (c7(7)[2k))?’

sin?0 cos? ¢ = , (7.15)

(7.16)

where we have used (2.18), (7.8) and restricted ourselves to pulses for which o < A. Substituting
(7.16) into (7.14), we obtain ;
_4 7(T)\} (14 [c7(7)[4R])%
N =5 (%0) T+ [ (n)2h] (7.17)

53-2
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which, provided the condition (2.10) holds, reduces to the equation (7.1) derived from the
more formal theory. Thus the fading is slowest near the first return, and reaches a maximum
rate of 4/A,/2 when 700 (this last result follows from (7.17) which holds even when (2.10) is
violated).

Both the elementary and formal theories of the spatial fading frequency only hold if the mean
distance |ARy|, between zeros is smaller than the width AR(7) of the annulus of contributing
points ((7.11) and (5.19)). This is always the case, however, since

|ARy|, 1 A
AR(7) — N(1) AR(7 J2o‘

(7.18)

which is small because of (1.1).

The formulae (7.1), (7.8) and (7.17) show that N,(§) is independent of the nature of the
surface, which seems paradoxical, since no fading is observable for a flat perfect mirror surface.
But our arguments have implied a large number of essentially independent scattering objects in
the contributing annulus, so that the surface must satisfy the condition (4.2). Furthermore, the
visibility of the fading predicted for a given time delay depends on the mean echo power

W2 (r, Ry))

being sufficiently large to be detected, and this certainly does involve the properties of the
surface, as explained in §6. We shall return to this matter in § 7 (ii).

Now we discuss the spectral purity of the spatial fading for fixed delay time, which can be
characterized by ¢(7), defined by
o(r) = r.m.s. deviation of the distance between successive zeros from its mean value |JAR

|AR[o

To calculate ¢(7) we employ the methods introduced by Longuet-Higgins (1956) in an analysis
of the statistics of random surfaces. We consider the echo ¥/(7, R,) to be a superposition of plane
waves with (two-dimensional) wavenumbers K in the horizontal plane:

olo. (7.19)

(1, Ry) = [ [ ARTE(R, 1)} exp (K- R+ 2(K, 7)), (7.20)

where the plane wave K has a phase (K, 7) and an intensity £(K, 7). The function E(K, 7) is
termed the ‘power spectrum’ of the echo; in the present problem the isotropy of the surface
statistics demands that E(K, 7) is a function only of the length K of K (unlike the phase (K, 7),
which must depend on the direction of K if a particular source-receiver point R is not to be
singled out). The echo autocorrelation function, Cy(7, R) is the normalized Fourier transform
of the power spectrum, which in this case may be written as

J‘ dK E(K,7) exp {iK- R}

Cy(r, R) = , (7.21)
f dK E(K,7)
f " 4K KJ,(KR) B(K, ) -
B f:dKKE(K, D .

The power spectrum is known, since our formulae (5.28) and (5.30) for (7, R) have the same
form as (7.22) (i.e. they are Bessel transforms over R), with

K = 2w,(7'[ch)*. (7.23)
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STATISTICAL PROPERTIES OF ECHOES 647

We are interested in the statistics of the fading as R, varies along a straight line; thus we require
a modified power spectrum &'(g, 7) (where ¢ is again a wavenumber), defined by

f dgcosgR&(q, )

Cy(1,R) = , (7.24)
[ asetan
0
and é(q,7) =f: dKfmlg(fJ—;?T)—)%' (7.24q)

The principal periodicity in (7, R;) encountered as the source moves along a line has a wave-
number equal to the r.m.s. value of ¢ over the distribution &(¢,7) (Longuet-Higgins 1956);
from (7.24a), this is given by

f “dgq2€(g,7) f dK K3E(K, )
0

¢*(1) ="7g = 31K3(7). (7.25)
f dg&(g,7) f dK KE(K, 7)
0
Our previously evaluated fading rate N(r) is related to ¢3(7) by
2
Ne(r) = Gl (T»%, (7.26)

and indeed a direct evaluation of g2(7) by the use of (7.25) yields (7.1) exactly, which is a useful
check. The factors of § in (7.25) and (7.15) have the meaning: the fading rate is reduced by
interference between points on the contributing annulus of figure 2 which lie far from the
vertical plane through the direction of motion of the source-receiver, since the path-lengths to
such points vary more slowly with R, than the path-lengths to points lying fore-and-aft of the
source.

We now have the machinery required to estimate the quantity e(r) (7.19) which is a measure
of the degree of periodicity of the fading. According to Rice (1945, §3.4) and Longuet-Higgins
(1956), e(7) is approximately given by the r.m.s. width of the distribution & (g, 7); the approxi-
mation is exact in the limit ¢(7) -0 —i.e. for a narrow power spectrum. From (7.24) we have

[ asa-0600,0)]

e(r) = [*—rs = [1_§M]. (7.27)
| [Tasete R
0
When the echo has a long tail, i.e. when (7.7) holds, it can be shown that
8(75(7)) 213
o(r) = [1 - Sth,r((TT))) J , (7.28)

f dr'r'¥a?(r —1')

f d7'a*(t—1')

and 7(7) is given by (7.8). A little analysis shows that in the tail of the echo, i.e. when 7 > o/2¢,
e(7) takes the constant value

where (7.29)

T>0/2¢

> 0.435, (7.30)
53-3

¢(7)
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which is the smallest possible value of ¢(7), corresponding to the narrowest possible distribution
&(g,1), which occurs (7.24a) when E(k,7) is an annular delta-function of K = |K]|. In the head
of the echo, (7) increases a little as 7 decreases — i.e. the fading becomes more irregular — until,
at 7 = 0, € has the value 6(0) = 0.562. (7.31)

Thus there is a spread in fading wavelengths for the echo wavefunction, even for long delay
times; this is due to the assumed azimuthal isotropy of the source — if the emitted pulse were
confined to a narrow fan in the vertical plane containing the direction of motion of the source,
it would be possible for &(g, ) to be arbitrarily sharp, and ¢(r) could tend to zero for large 7,
i.e. the spatial fading could be precisely periodic. We are not asserting that the considerable
wavelength differences (7.30) or (7.31) will be encountered in successive intervals between zeros,
because we have not examined the degree of correlation between neighbouring intervals.

"To conclude this section, we examine the form of the autocorrelation Cy (7, R) as given by the
equations (5.28) and (5.30), and, in particular, we ask for the separation Rmax(7) in source-
receiver positions beyond which the echoes are no longer correlated. The integrands of the
expressions for C,(7, R) contain an oscillatory factor (the Bessel function), while the other
factors constitute a positive peak centred on 7’ = 7 with width o/c. If R is so large that more than
one complete oscillation of the Jy-factor is contained within this peak, the value of the integral

will be very small; thus we obtain 2
Ruax(1) » ;_(cln')%, (7.32)

which is valid in the echo tail, where 7 > o//2¢. There is a simple physical interpretation of this
result: if the finite width of the annulus in figure 7 is taken into account, it is clear that in order
for any correlation in the spatial fading to occur, the change in the path difference 2, M — P, M
as M moves across the annulus must not exceed about $A and this occurs when |ARy| = Ruax(7)
as given by (7.32). (Itis generally the case that Rmax(7) < AR(7), so that the correlations vanish
before (5.19) is violated.)

Between points which are correlated, i.e. when R € Rmax(7), the Jy-factor in the expressions
for C, (7, R) varies slowly and the integrals are dominated by the peak at 7" = 7; thus

B < Rmax(1)
Cy(r,R) = Jy(2Rwy4/(7[ch)). (7.33)
The correlations in the tail of the echo (where Rmax(7) is large) are therefore oscillatory out to
R = Rmax(7), while in the head of the echo (i.e. for 7 < o/2¢) we expect that Cy(, R) will have
fallen to zero before Jy(2Rw,(7/ch)¥) begins to oscillate.

To illustrate these properties of the autocorrelation function, figure 8 shows C, (7, R) against R,
computed for four different delay times 7; it is clear that as 7 decreases, C;(7, R) departs increas-
ingly from the limiting form (7.33), as we would expect.

Finally, we evaluate Cy(7, R) in the monochromatic limit oA —co; then 7 is always within the
main body of the echo, there being no tail. The pulse envelope « () is constant, and (5.28) and
(5.30), together with (6.8 to 10), yield

o/A—>0

C,(r, R) Cf(zs"c’OR / J(1—exp{— 4S2w§/02})) surface c, (7.34)
—— C4(R) surface g, (7.35)
—— C4(R) surface y. (7.36)
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Ficure 8. Echo spatial autocorrelation function for four different delay times (A = 1, = 100, § =1, L = 5, un-
dulating rough surface a). (a) o = 10, cr = 40; , C(r, R); ———=, Jo{(4nR|A) (c‘r/h)%}, R, =6.3.
(8) o = 10, ¢T = 20; , C(1,R); ————, Jo{(4rcR//\) (cr/h)%}, i = 45 (¢) o =10, et = 10; .
C(r,R); ———-, Jo{(4ﬂRl/\) (w/h)‘é}, R = 3.16. (d) et = C(7,R) for o = 10; —+—~.— C(‘r R) for

o = 100; ————, C(7, R) in monochromatic limit o - oo (7. ‘-34)
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These expressions are independent of %, which is consistent with the proof by Booker et al. (1950)
that the echo wavefunction ‘conserves’ its autocorrelation function as the source is raised above
the reference plane, when the wave is monochromatic. We can check the results, (7.34) to (7.36),
by examining the case when % is very small; the diffraction integral (2.12) gives, if F(¢) is mono-
chromatic

Velr, R) > — SR LINT 7 ) e (i (Ry) ) (7.37)

The autocorrelation function of this wavefunction equals (7.85) and (7.36) precisely for the
surfaces # and 7, while for the undulating surface «, (7.37) gives
o= exp {4803 C;(R)[c?} — 1
" exp{4S?3[c* -1

a formula equivalent to (7.34) for large and small R when § is large or moderate, and for all R
when § is small, as would be expected in view of the basic substitution (3.23). The approach to
the monochromatic limit is illustrated by figure 84, which shows C, (7 = 0, R) for pulses of three
different lengths.

All of these properties of the autocorrelation function of the echo wavefunction have their
counterparts for the autocorrelation functions of the smoothed power, and of the amplitude,
since these quantities are given by (4.23) and (4.29) respectively.

Cy(7, R)

(7.38)

7(ii). Ultimate sensitivity of position location by the use of echo fading

In this section we deal with the use of the spatial fading of the echo to detect a horizontal
movement AR, of the source-receiver relative to the rough surface. It is sensible to employ the
smoothed power, or the amplitude p, rather than the wavefunction itself, because ¥ (7, R,) is
phase-sensitive to /£, and the result of an accidental change in height might be misinterpreted as
spatial fading (a method for using this phase information for precise measurement of changes
in £ is suggested by Nye et al. 19725). We ask: what is the smallest value of |ARy| which can be
detected by observing the fading of p?

The answer involves the spatial rate of change of p, whose r.m.s. value at time delay 7, (p'2),
is given by (4.35). Precisely the same methods as were used in §7 (i) to calculate the fading
frequency N(7) can be used for {p'®)3, with the result

vt _ 4 (07(7) Z()\E
<p >1' - )\ ( 2;l ) (7.39)
where 7(7) is given by (7.8) and figure 6, while 2(7) is given by (5.27) or (5.29). Let us denote by
Ap the smallest change in echo amplitude which can be detected above instrumental noise, and
assume that by judicious siting of the apparatus a place can be found where p is varying n times
as fast as its r.m.s. value. Then (7.39) gives, for the minimum detectable displacement at time

delay 7, A 2% 1
IAROImin,T = 4 p( ) .
T

c7(1) 2(7)

This quantity is large for small 7, because the fading wavelength is large near the first return,
and itis large for large 7, because although the fading wavelength is smallest in the tail, the mean
echo power X' is very small, and the signal is lost in the noise. Thus there is an optimum time
delay, at which the echo is most sensitive to changes in position; this is 7min, given by

L 17(0) 50 = 0. (7.41)

(7.40)
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To estimate this quantity we assume that the echo has an appreciable tail, so that the half-length
T discussed in §6 (iii) exceeds about o. The limiting forms of X(7) (§6 (ii)) and 7(7) (7.10) then
yield
Tmin & 57, (7.42)
where 7 is given by (6.14) and (6.15) (it should not be forgotten that 7" is measured from the
origin of 7).
Thus, when the echo amplitude is most sensitive to horizontal movement, the smallest de-

tectable displacement is .
0.2/\( h ) Ap
AR, min & — (=) ——— . 7.43)
Aalin* =2 et (

For the undulating surface &, which is surely the surface most likely to be found in nature, this
result takes on a very convenient form; using (6.14) and the surface slope distribution (3.22),

we get
0.2A Ap

n[{f 2P arss]

As an example, suppose that » = 2, that the r.m.s. surface slope is 10°, and that the instrument
can detect a change in p of about 2 %, of the r.m.s. amplitude when 7 &~ T then a change in
position of about 1 9, of a wavelength could be detected. Accuracy of this order has already been
achieved in Antarctic radar echo research by Walford (1972).

|AR|min =

(7.44)

8. SUMMARY OF PRINCIPAL RESULTS: CONCLUSIONS

We have calculated a number of statistical properties of the echo returned from the three
rough surfaces introduced in § 3. In this section we reproduce the principal formulae, employing
the original equation numbers to facilitate reference to the derivations.

Half the echo power arrives over a time 7+ o (§6 (ii1)) which is generally long compared
with the duration o/c of the pulse sent out from the source. The ‘half-power’ time 7" (measured
from 7 = 0) is given by

T = 2.77hS?%cL?* (surface o), (6.14)
3hA2
T = 1ol (1=4¢) (surfaces g, 7). (6.15)

The form of the tail of late returns of the echo power is given by

W3, R)Y 225 comst. x Q(7), (6.6), (6.7
where Q(7) is defined by (5.35) and (5.36). Whenever a tail is observed, broadening the echo
power significantly, the reflexion is incoherent, as discussed in §6 (ii); then only X(7), the
variance of the echo ¥/(7, R,), contributes to the echo power (6.1), the average echo wave-
function (y(7, R,)) being negligible (§5 (i)).

When the r.m.s. surface height § does not exceed the pulse-length o, the general formula for
the average echo power, showing the transition from coherence (6 = 1) to incoherence (& = 0), is

@ R = S5t (2w oot + (1-0) [arery -}, (530

where we have also used (6.1) and (5.6).

54 Vol. 273. A,
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652 M. V.BERRY

These properties of (¥*(7, R,) suggest a method for inferring the nature of the surface from
observations on the echo, outlined in § 6 (ix).

The ‘spatial fading’ of the echo as the source-receiver position R, is varied is not a potential
source of extra information about the form of the rough surface. As shown in §7, this fading is a
consequence of the Gaussian noise properties of the echo, together with the quasi-mono-
chromaticity of the original pulse. A convenient statistical parameter describing the fading of
the time-smoothed echo power introduced in §2 (i) is N;***(7), the average number of times
that the echo amplitude p (4.3) passes through the value Z* when the source-receiver is moved
through unit distance along a horizontal straight line, 2% being the amplitude level where the
fading is fastest. We found that

s 224 (cT(7)\ (1 + (c7(7)[4h))}
g <T)_T( 7 ) 1+ (7(7)]2h) (7.4), (7.17)

J “ d7'r'a®(1—1')

0
foo dr'a®(r—1")
0

where, to a close approximation, 7(7) = , (7.8)

a function plotted in figure 6.
It is possible, however, to employ the spatial fading as a very sensitive indicator of horizontal
movement of the source-receiver relative to the rough surface, the smallest detectable displace-

.\ :

IARol min ~ 92—/\ (i)z Ll (7.43)
n \eT) [{p¥arss]?

The portion of the echo just after the half-power time is most sensitive to horizontal displacements.

The theory of this paper could be extended in at least three directions. First, the restriction
to statistically isotropic rough surfaces could be removed; this would be necessary in treating
reflexion from, say, a surface of randomly spaced ridges, and would result in an echo auto-
correlation function C, (7, R) which depends on the direction as well as the magnitude of the
separation R between two source-receiver positions.

Secondly, the statistics of the echo as a function of time delay 7 could be investigated; we have
simply calculated the average echo wavefunction and power at time delay 7, and confined our
discussion of fading — i.e. of departures from the average values — to variations in R at fixed 7.
A theory of the statistics of ¥(7, Ry) in the three-dimensional ‘space’ specified by 7 and R, is
necessary in order to understand the statistical topology of the surfaces on which (7, R,) or
(¥%(1, Ry))gm is constant. For example, it would be desirable to predict the average density of
the ‘dislocation lines’ discovered by J. F. Nye (unpublished), which mark the places where
zeros in the curve of ¥ (7, R,) against 7 appear or disappear as R, varies. The problem is a
difficult one, because the statistics of the echo are non-stationary in 7, due to the 7-dependence of
(7, Ry)Y (§5(i)) and (Y2(r, Ry)) (§6).

Finally, the ‘partial ensemble averaging’ over ‘neighbourhoods’ which must be employed
(§1) when there is a continuous transition between ‘roughness’ and ‘geography’ should be put
on a more secure mathematical foundation. Again the difficulty arises because the echo statistics
are non-stationary, this time in the variable R,.

ment being

It is a pleasure to thank Professor J. F. Nye for his constant encouragement and keen criti-
cisms, which led to a complete rewriting of the paper, and Drs M. E. R. Walford and D. A.
Greenwood for many helpful discussions and suggestions.
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APPENDIX 1
It is required to derive (4.34) from (4.33), and (4.38) from (4.37), using (4.24) and (4.5).
First we evaluate P§(py, py, dR) where |dR| is small. We can replace Cy, 42(dR) by

Cpops(dR) & 1— 3| dR|?|Cy,ys(0)], (A1)
so that (4.24) gives, on using (4.5)
P1P2 am _ (P +P3—2p1ps 08 (X1— Xe)
Pf(PlapzadR) 4 Zgldezcwf dXI 0 dXzeXP{ 22|dR|20”
(P1P2 €O (X1— Xa) +<ED? + (1)* — py cOs X1(E)

X exp — P2 COS X22<§> — P1810 X1 () — Py Sin Xz<"7>)} , A2
where we have retained terms up to zero order in |dR| in the exponent, and used the abbreviation
= |Cy.,2(0)]. (A3)

Because of the appearance of |dR|? in the denominator of the first exponent in (A 2), the first
exponential factor is very sharply peaked about y; = y,, and the method of steepest descent
may be used to evaluate the integral over y,, to lowest order in |dR|. This gives
o _ (P12 \texp{—(p1—ps)?/2XC"|dR|}}
P2 (p13p2,dR) - (2110//2) 2752|de
m - — ()2 = {n)2+ (p1+p,) (cos +sin
<[ Tax, exp{ p1Pz—<EY* — ) (plzzpz) (cos 1¢€) x1<77>)} (A 4)

(or=pa)? . (papat €+ (0)?)
(chl(é),,z )le P{ {22?0”](§R1;|'d1':|p 2% . }} (P1+P2(<g>2+<,7>2))

(A 5)
On setting p; = p, py = p+p’'|dR| and noting (4.25), (4.34) follows at once.

In order to perform the double integration in (4.37), it is only necessary to realize that (A 5)
is negligible unless p; ~ p,, which, together with the limits in (4.37), implies that we can set
P1 & Py & pp everywhere in (A 5) except the first exponential factor. Then we use the formula

lim dplf dpyexp{— (py—p0)?/22C"|dR|?*} = XC"|dR|?, (A 6)
(|aR|—0)
and (4.38) follows 1mmed1ately.

APPENDIX 2
The step from (5.12) to (5.13) requires the proof of the relation

I= fdedezexp{ (0, R? — wy| Ry— Rl} (2“’2 201 |R, R1|)

[4

}
= Zrczolzf dr’ exp {i(w; — w,) 7'}, (ZR (%:;lz ) )
}
v fo dR’R'J0(2R’ (“’16‘22 ) )P2(2w2 2o, R) (A7)

[4 [4

where w, and w, are positive. To evaluate the integrals over R; and R, we change variables to
R, and R’ = R, — R,, which we express in polar coordinates; this gives

0 2m © 2m 1
I = f dRszf d@zf dR’R'f do’ exp {i [wy(RE+R"?+ 2R, R’ cos &)
0 0 0 0
— wg(R3+R*— 2R, R cos 0, )]} (2‘0”2 20y R) (A 8)

54-2
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where we have measured ¢’ from the direction R,, and 0, from the direction R. The angular
integrations define Bessel functions (Gradshteyn & Ryzhik 1965, equation 8.411.1), so that

1= 4x? f "R, f " AR'R,R’ exp {—1-
0 0 he

2R, R'w 2R, Rw,\ = {20, 2w
) () (252 ). n

The integral over R, is equation 6.633.2 of Gradshteyn & Ryzhik (1965), which gives

271: l}l(J Y iwlwz(R/Z_l_RZ) 2R1Rw1w2) _ 2w2 2w1 ’ .
e a{w; — ) }J"(/wwl—wz) B3 2 R). (a0

W —Wy) R2 4w, R'? — w, R?
1 2+ 0 2

Now we introduce the dummy delay time variable 7’; by writing

I—Qn%/zf dR'R’ f dr exp {i(w, — wg) '} M(r') P, (2“’2 22"1,13'), (A 11)

LY

so that M(7") is defined by
s rw O : 2 2 '
M(7) = %cf dQexp!{2 1027 }exp{_lwlwz(R +R )}JO(QRR wlwz). (A 12)

che2 ch&2
The essential singularities of the integrand at £2 = 0 and 2 = co imply that
M) =0 if 7' <0O. (A 13)
For7' > 0, a straightforward change of variable gives
_ 1 [i=te dy 4w, 0,(R*+ R'?) 7')} ' 4RR'w1w27’)
M) =g Lexpls(y- 22 B(FERA), A

which is a standard integral (Gradshteyn & Ryzhik 1965, equation 8.4.24) with the value

M@ = J, (21—2 (“’1;‘22”')’5) Ji (2R’ (%)A) (A 15)

This result, together with (A 13) and (A 11), gives (A 7) immediately. This method seems rather
long-winded, but I cannot find a simpler one.
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